protected class KMeansMinusMinus.Instance extends AbstractKMeans.Instance
Modifier and Type | Field and Description |
---|---|
(package private) java.util.List<ModifiableDoubleDBIDList> |
clusters
Cluster storage.
|
(package private) int |
heapsize
Desired size of the heap.
|
(package private) DoubleMinHeap |
minHeap
Heap of the noise candidates.
|
(package private) double |
prevvartotal
Variance of the previous iteration
|
assignment, isSquared, k, key, means, relation, varsum
Constructor and Description |
---|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected int |
assignToNearestCluster()
Returns a list of clusters.
|
protected Clustering<KMeansModel> |
buildResultWithNoise() |
protected Logging |
getLogger()
Get the class logger.
|
protected int |
iterate(int iteration)
Main loop function.
|
protected double[][] |
meansWithTreshhold(double tresh)
Returns the mean vectors of the given clusters in the given database.
|
buildResult, buildResult, copyMeans, distance, isSquared, meansFromSums, movedDistance, recomputeSeperation, run
DoubleMinHeap minHeap
int heapsize
double prevvartotal
java.util.List<ModifiableDoubleDBIDList> clusters
public Instance(Relation<? extends NumberVector> relation, NumberVectorDistanceFunction<?> df, double[][] means)
relation
- Relationdf
- Distance functionmeans
- Initial meansprotected int iterate(int iteration)
AbstractKMeans.Instance
iterate
in class AbstractKMeans.Instance
iteration
- Iteration number (beginning at 1)protected Clustering<KMeansModel> buildResultWithNoise()
protected int assignToNearestCluster()
assignToNearestCluster
in class AbstractKMeans.Instance
protected double[][] meansWithTreshhold(double tresh)
tresh
- Thresholdprotected Logging getLogger()
AbstractKMeans.Instance
getLogger
in class AbstractKMeans.Instance
Copyright © 2019 ELKI Development Team. License information.