|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use NumberVector | |
---|---|
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique | Helper classes for the CLIQUE algorithm. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) |
de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. |
de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. |
de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. |
de.lmu.ifi.dbs.elki.data.type | Data type information, also used for type restrictions. |
de.lmu.ifi.dbs.elki.datasource.filter | Data filtering, in particular for normalization and projection. |
de.lmu.ifi.dbs.elki.datasource.parser | Parsers for different file formats and data types. |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.geo | Geographic (earth) distance functions. |
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. |
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | Distance functions designed for time series. |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. |
de.lmu.ifi.dbs.elki.index.preprocessed | Index structure based on preprocessors |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. |
de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. |
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. |
de.lmu.ifi.dbs.elki.index.tree.spatial | Tree-based index structures for spatial indexing. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants | R*-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | DeLiCluTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | RStarTree |
de.lmu.ifi.dbs.elki.math | Mathematical operations and utilities used throughout the framework. |
de.lmu.ifi.dbs.elki.math.linearalgebra | Linear Algebra package provides classes and computational methods for operations on matrices. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.math.spacefillingcurves | Space filling curves. |
de.lmu.ifi.dbs.elki.utilities | Utility and helper classes - commonly used data structures, output formatting, exceptions, ... |
de.lmu.ifi.dbs.elki.utilities.referencepoints | Package containing strategies to obtain reference points Shared code for various algorithms that use reference points. |
de.lmu.ifi.dbs.elki.visualization.projections | Visualization projections |
de.lmu.ifi.dbs.elki.visualization.projector | Projectors are responsible for finding appropriate projections for data relations. |
de.lmu.ifi.dbs.elki.visualization.scales | Scales handling for plotting. |
de.lmu.ifi.dbs.elki.visualization.svg | Base SVG functionality (generation, markers, thumbnails, export, ...). |
de.lmu.ifi.dbs.elki.visualization.visualizers | Visualizers for various results |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d | Visualizers based on 1D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm with type parameters of type NumberVector | |
---|---|
class |
DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA. |
static class |
DependencyDerivator.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>>
Parameterization class. |
class |
DummyAlgorithm<O extends NumberVector<?,?>>
Dummy Algorithm, which just iterates over all points once, doing a 10NN query each. |
class |
KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors. |
static class |
KNNJoin.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type NumberVector | |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
Abstract superclass for projected clustering algorithms, like PROCLUS
and ORCLUS . |
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
static class |
AbstractProjectedDBSCAN.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>>
Parameterization class. |
class |
DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database. |
static class |
DeLiClu.Parameterizer<NV extends NumberVector<NV,?>,D extends Distance<D>>
Parameterization class. |
class |
EM<V extends NumberVector<V,?>>
Provides the EM algorithm (clustering by expectation maximization). |
static class |
EM.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm. |
static class |
KMeans.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type NumberVector | |
---|---|
class |
COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions. |
static class |
COPAC.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>>
Parameterization class. |
class |
ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result. |
static class |
ERiC.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
FourC<V extends NumberVector<V,?>>
4C identifies local subgroups of data objects sharing a uniform correlation. |
static class |
FourC.Parameterizer<O extends NumberVector<O,?>>
Parameterization class. |
class |
HiCO<V extends NumberVector<V,?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters. |
static class |
HiCO.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
ORCLUS<V extends NumberVector<V,?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces. |
static class |
ORCLUS.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as NumberVector | |
---|---|
(package private) V |
ORCLUS.ORCLUSCluster.centroid
The centroid of this cluster. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type parameters of type NumberVector | |
---|---|
class |
CLIQUE<V extends NumberVector<V,?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality. |
static class |
CLIQUE.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies. |
static class |
DiSH.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
HiSC<V extends NumberVector<V,?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters. |
static class |
HiSC.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
PreDeCon<V extends NumberVector<V,?>>
PreDeCon computes clusters of subspace preference weighted connected points. |
static class |
PreDeCon.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
PROCLUS<V extends NumberVector<V,?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces. |
static class |
PROCLUS.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
SUBCLU<V extends NumberVector<V,?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces. |
static class |
SUBCLU.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as NumberVector | |
---|---|
(package private) V |
PROCLUS.PROCLUSCluster.centroid
The centroids of this cluster along each dimension. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique with type parameters of type NumberVector | |
---|---|
class |
CLIQUESubspace<V extends NumberVector<V,?>>
Represents a subspace of the original data space in the CLIQUE algorithm. |
class |
CLIQUEUnit<V extends NumberVector<V,?>>
Represents a unit in the CLIQUE algorithm. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with type parameters of type NumberVector | |
---|---|
class |
ABOD<V extends NumberVector<V,?>>
Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets. |
static class |
ABOD.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu. |
class |
AggarwalYuEvolutionary<V extends NumberVector<?,?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data. |
static class |
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector<?,?>>
Parameterization class. |
class |
AggarwalYuNaive<V extends NumberVector<?,?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers. |
static class |
AggarwalYuNaive.Parameterizer<V extends NumberVector<?,?>>
Parameterization class. |
class |
EMOutlier<V extends NumberVector<V,?>>
outlier detection algorithm using EM Clustering. |
static class |
EMOutlier.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
GaussianModel<V extends NumberVector<V,?>>
Outlier have smallest GMOD_PROB: the outlier scores is the probability density of the assumed distribution. |
static class |
GaussianModel.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach. |
static class |
GaussianUniformMixture.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points. |
static class |
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class. |
class |
SOD<V extends NumberVector<V,?>>
|
static class |
SOD.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
static class |
SOD.SODModel<O extends NumberVector<O,?>>
|
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as NumberVector | |
---|---|
private O |
SOD.SODModel.center
|
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
---|
Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with type arguments of type NumberVector | |
---|---|
OutlierResult |
FeatureBagging.run(Relation<NumberVector<?,?>> relation)
Run the algorithm on a data set. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with type parameters of type NumberVector | |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. |
static class |
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class |
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
Mean Approach is used to discover spatial outliers with multiple attributes. |
static class |
CTLuMeanMultipleAttributes.Parameterizer<N,O extends NumberVector<?,?>>
Parameterization class. |
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
Median Approach is used to discover spatial outliers with multiple attributes. |
static class |
CTLuMedianMultipleAttributes.Parameterizer<N,O extends NumberVector<?,?>>
Parameterization class. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with type arguments of type NumberVector | |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run the algorithm |
private Pair<DBID,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run a single iteration of the GLS-SOD modeling step |
Uses of NumberVector in de.lmu.ifi.dbs.elki.algorithm.statistics |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.statistics with type parameters of type NumberVector | |
---|---|
class |
EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. |
static class |
EvaluateRankingQuality.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.application.visualization |
---|
Classes in de.lmu.ifi.dbs.elki.application.visualization with type parameters of type NumberVector | |
---|---|
class |
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and distance function. |
static class |
KNNExplorer.Parameterizer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.data |
---|
Classes in de.lmu.ifi.dbs.elki.data with type parameters of type NumberVector | |
---|---|
interface |
NumberVector<V extends NumberVector<? extends V,N>,N extends Number>
Interface NumberVector defines the methods that should be implemented by any Object that is element of a real vector space of type N. |
Subinterfaces of NumberVector in de.lmu.ifi.dbs.elki.data | |
---|---|
interface |
SparseNumberVector<V extends SparseNumberVector<V,N>,N extends Number>
Combines the SparseFeatureVector and NumberVector |
Classes in de.lmu.ifi.dbs.elki.data that implement NumberVector | |
---|---|
class |
AbstractNumberVector<V extends AbstractNumberVector<? extends V,N>,N extends Number>
AbstractNumberVector is an abstract implementation of FeatureVector. |
class |
BitVector
Provides a BitVector wrapping a BitSet. |
class |
DoubleVector
A DoubleVector is to store real values approximately as double values. |
class |
FloatVector
A FloatVector is to store real values approximately as float values. |
class |
IntegerVector
An IntegerVector is to store integer values. |
class |
OneDimensionalDoubleVector
Specialized class implementing a one-dimensional double vector without using an array. |
class |
ParameterizationFunction
A parameterization function describes all lines in a d-dimensional feature space intersecting in one point p. |
class |
SparseFloatVector
A SparseFloatVector is to store real values approximately as float values. |
Methods in de.lmu.ifi.dbs.elki.data with type parameters of type NumberVector | ||
---|---|---|
static
|
VectorUtil.getRangeDouble(V vec)
Return the range across all dimensions. |
|
static
|
VectorUtil.randomVector(V template)
Produce a new vector based on random numbers in [0:1] of the same type and dimensionality as the given vector. |
|
static
|
VectorUtil.randomVector(V template,
Random r)
Produce a new vector based on random numbers in [0:1] of the same type and dimensionality as the given vector. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.data.model |
---|
Classes in de.lmu.ifi.dbs.elki.data.model with type parameters of type NumberVector | |
---|---|
class |
CorrelationAnalysisSolution<V extends NumberVector<V,?>>
A solution of correlation analysis is a matrix of equations describing the dependencies. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.data.type |
---|
Fields in de.lmu.ifi.dbs.elki.data.type with type parameters of type NumberVector | |
---|---|
static VectorFieldTypeInformation<NumberVector<?,?>> |
TypeUtil.NUMBER_VECTOR_FIELD
Input type for algorithms that require number vector fields. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.datasource.filter |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.datasource.parser |
---|
Classes in de.lmu.ifi.dbs.elki.datasource.parser with type parameters of type NumberVector | |
---|---|
class |
NumberVectorLabelParser<V extends NumberVector<?,?>>
Provides a parser for parsing one point per line, attributes separated by whitespace. |
static class |
NumberVectorLabelParser.Parameterizer<V extends NumberVector<?,?>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction with type parameters of type NumberVector | |
---|---|
interface |
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?,?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors. |
static interface |
FilteredLocalPCABasedDistanceFunction.Instance<T extends NumberVector<?,?>,I extends Index,D extends Distance<D>>
Instance produced by the distance function. |
class |
LocallyWeightedDistanceFunction<V extends NumberVector<?,?>>
Provides a locally weighted distance function. |
static class |
LocallyWeightedDistanceFunction.Instance<V extends NumberVector<?,?>>
Instance of this distance for a particular database. |
static class |
LocallyWeightedDistanceFunction.Parameterizer<V extends NumberVector<?,?>>
Parameterization class. |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with type parameters of type NumberVector | ||
---|---|---|
|
AbstractCosineDistanceFunction.instantiate(Relation<T> relation)
|
|
|
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
ManhattanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
EuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MaximumDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MinimumDistanceFunction.instantiate(Relation<T> relation)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return types with arguments of type NumberVector | |
---|---|
SimpleTypeInformation<? super NumberVector<?,?>> |
AbstractVectorDoubleDistanceFunction.getInputTypeRestriction()
|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
WeightedDistanceFunction.getInputTypeRestriction()
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type NumberVector | |
---|---|
protected double |
AbstractCosineDistanceFunction.angle(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Compute the angle between two vectors. |
protected double |
AbstractCosineDistanceFunction.angle(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Compute the angle between two vectors. |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
SquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the squared Euclidean distance between the given two vectors. |
double |
SquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the squared Euclidean distance between the given two vectors. |
double |
ManhattanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Compute the Manhattan distance |
double |
ManhattanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Compute the Manhattan distance |
double |
EuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Euclidean distance between the given two vectors. |
double |
EuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Euclidean distance between the given two vectors. |
double |
MaximumDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
MaximumDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
WeightedLPNormDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
WeightedLPNormDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
MinimumDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
MinimumDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
ArcCosineDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the cosine distance for two given feature vectors. |
double |
ArcCosineDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the cosine distance for two given feature vectors. |
double |
WeightedSquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the squared Euclidean distance between the given two vectors. |
double |
WeightedSquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the squared Euclidean distance between the given two vectors. |
double |
LPNormDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Returns the distance between the specified FeatureVectors as a LP-Norm for the currently set p. |
double |
LPNormDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Returns the distance between the specified FeatureVectors as a LP-Norm for the currently set p. |
double |
CosineDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the cosine distance for two given feature vectors. |
double |
CosineDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the cosine distance for two given feature vectors. |
double |
WeightedDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the Weighted distance for feature vectors. |
double |
WeightedDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the Weighted distance for feature vectors. |
protected double |
SquaredEuclideanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?,?> v)
|
protected double |
ManhattanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?,?> v)
|
protected double |
EuclideanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?,?> v)
|
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with type parameters of type NumberVector | ||
---|---|---|
|
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with parameters of type NumberVector | |
---|---|
double |
HistogramIntersectionDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
double |
HistogramIntersectionDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
|
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with type parameters of type NumberVector | |
---|---|
static class |
ERiCDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
static class |
PCABasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with type parameters of type NumberVector | ||
---|---|---|
|
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database)
|
|
|
ERiCDistanceFunction.instantiate(Relation<T> database)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type NumberVector | |
---|---|
BitDistance |
ERiCDistanceFunction.distance(NumberVector<?,?> v1,
NumberVector<?,?> v2,
PCAFilteredResult pca1,
PCAFilteredResult pca2)
Computes the distance between two given DatabaseObjects according to this distance function. |
BitDistance |
ERiCDistanceFunction.distance(NumberVector<?,?> v1,
NumberVector<?,?> v2,
PCAFilteredResult pca1,
PCAFilteredResult pca2)
Computes the distance between two given DatabaseObjects according to this distance function. |
double |
SquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the squared Pearson correlation distance for two given feature vectors. |
double |
SquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the squared Pearson correlation distance for two given feature vectors. |
double |
PearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the Pearson correlation distance for two given feature vectors. |
double |
PearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the Pearson correlation distance for two given feature vectors. |
double |
WeightedPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the Pearson correlation distance for two given feature vectors. |
double |
WeightedPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the Pearson correlation distance for two given feature vectors. |
double |
WeightedSquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the squared Pearson correlation distance for two given feature vectors. |
double |
WeightedSquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the squared Pearson correlation distance for two given feature vectors. |
Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with type arguments of type NumberVector | |
---|---|
ERiCDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory,
double delta,
double tau)
Constructor. |
|
ERiCDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory,
double delta,
double tau)
Constructor. |
|
PCABasedCorrelationDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory,
double delta)
Constructor |
|
PCABasedCorrelationDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory,
double delta)
Constructor |
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.geo that return types with arguments of type NumberVector | |
---|---|
SimpleTypeInformation<? super NumberVector<?,?>> |
LngLatDistanceFunction.getInputTypeRestriction()
|
SimpleTypeInformation<? super NumberVector<?,?>> |
LatLngDistanceFunction.getInputTypeRestriction()
|
SimpleTypeInformation<? super NumberVector<?,?>> |
DimensionSelectingLatLngDistanceFunction.getInputTypeRestriction()
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.geo with parameters of type NumberVector | |
---|---|
double |
LngLatDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
LngLatDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
LatLngDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
LatLngDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
DimensionSelectingLatLngDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
DimensionSelectingLatLngDistanceFunction.doubleDistance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with type parameters of type NumberVector | ||
---|---|---|
|
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database)
|
|
|
DiSHDistanceFunction.instantiate(Relation<T> database)
|
|
|
DimensionSelectingDistanceFunction.instantiate(Relation<T> database)
|
|
|
SubspaceDistanceFunction.instantiate(Relation<V> database)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that return types with arguments of type NumberVector | |
---|---|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
DimensionsSelectingEuclideanDistanceFunction.getInputTypeRestriction()
|
VectorTypeInformation<? super NumberVector<?,?>> |
DimensionSelectingDistanceFunction.getInputTypeRestriction()
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with parameters of type NumberVector | |
---|---|
DoubleDistance |
DimensionSelectingDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
DoubleDistance |
DimensionSelectingDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
double |
DimensionsSelectingEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Euclidean distance between two given feature vectors in the selected dimensions. |
double |
DimensionsSelectingEuclideanDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Euclidean distance between two given feature vectors in the selected dimensions. |
double |
DimensionSelectingDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the distance between two given DatabaseObjects according to this distance function. |
double |
DimensionSelectingDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Computes the distance between two given DatabaseObjects according to this distance function. |
protected double |
DimensionsSelectingEuclideanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?,?> v)
|
Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with type arguments of type NumberVector | |
---|---|
DiSHDistanceFunction(DiSHPreferenceVectorIndex.Factory<NumberVector<?,?>> indexFactory,
double epsilon)
Constructor. |
|
SubspaceDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory)
Constructor |
|
SubspaceDistanceFunction(IndexFactory<NumberVector<?,?>,FilteredLocalPCAIndex<NumberVector<?,?>>> indexFactory)
Constructor |
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries that return types with arguments of type NumberVector | |
---|---|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
AbstractEditDistanceFunction.getInputTypeRestriction()
|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
LCSSDistanceFunction.getInputTypeRestriction()
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries with parameters of type NumberVector | |
---|---|
double |
ERPDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Edit Distance With Real Penalty distance between the given two vectors. |
double |
ERPDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Edit Distance With Real Penalty distance between the given two vectors. |
double |
EDRDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Edit Distance on Real Sequence distance between the given two vectors. |
double |
EDRDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Edit Distance on Real Sequence distance between the given two vectors. |
double |
DTWDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Dynamic Time Warping distance between the given two vectors. |
double |
DTWDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Dynamic Time Warping distance between the given two vectors. |
double |
LCSSDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Longest Common Subsequence distance between the given two vectors. |
double |
LCSSDistanceFunction.doubleDistance(NumberVector<?,?> v1,
NumberVector<?,?> v2)
Provides the Longest Common Subsequence distance between the given two vectors. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with type parameters of type NumberVector | |
---|---|
class |
LinearKernelFunction<O extends NumberVector<?,?>>
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2. |
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with type parameters of type NumberVector | ||
---|---|---|
|
FooKernelFunction.instantiate(Relation<T> database)
|
|
|
PolynomialKernelFunction.instantiate(Relation<T> database)
|
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return types with arguments of type NumberVector | |
---|---|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
FooKernelFunction.getInputTypeRestriction()
|
VectorFieldTypeInformation<? super NumberVector<?,?>> |
PolynomialKernelFunction.getInputTypeRestriction()
|
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type NumberVector | |
---|---|
DoubleDistance |
FooKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
FooKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
FooKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides an experimental kernel similarity between the given two vectors. |
DoubleDistance |
FooKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides an experimental kernel similarity between the given two vectors. |
DoubleDistance |
PolynomialKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the linear kernel similarity between the given two vectors. |
DoubleDistance |
PolynomialKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the linear kernel similarity between the given two vectors. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.preprocessed |
---|
Classes in de.lmu.ifi.dbs.elki.index.preprocessed with type parameters of type NumberVector | |
---|---|
interface |
LocalProjectionIndex<V extends NumberVector<?,?>,P extends ProjectionResult>
Abstract index interface for local projections |
static interface |
LocalProjectionIndex.Factory<V extends NumberVector<?,?>,I extends LocalProjectionIndex<V,?>>
Factory |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return types with arguments of type NumberVector | |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?,?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?,?>> relation)
|
Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type arguments of type NumberVector | |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?,?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?,?>> relation)
|
Constructor parameters in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type arguments of type NumberVector | |
---|---|
SpatialApproximationMaterializeKNNPreprocessor.Factory(int k,
DistanceFunction<? super NumberVector<?,?>,D> distanceFunction)
Constructor. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.preprocessed.preference |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.tree.spatial |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial with parameters of type NumberVector | |
---|---|
SpatialPointLeafEntry(DBID id,
NumberVector<?,?> vector)
Constructor from number vector |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants with type parameters of type NumberVector | |
---|---|
class |
AbstractRStarTreeFactory<O extends NumberVector<O,?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,I extends AbstractRStarTree<N,E> & Index>
Abstract factory for R*-Tree based trees. |
static class |
AbstractRStarTreeFactory.Parameterizer<O extends NumberVector<O,?>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with type parameters of type NumberVector | |
---|---|
class |
DeLiCluTreeFactory<O extends NumberVector<O,?>>
Factory for DeLiClu R*-Trees. |
static class |
DeLiCluTreeFactory.Parameterizer<O extends NumberVector<O,?>>
Parameterization class. |
class |
DeLiCluTreeIndex<O extends NumberVector<?,?>>
The common use of the DeLiClu tree: indexing number vectors. |
Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type NumberVector | |
---|---|
DeLiCluLeafEntry(DBID id,
NumberVector<?,?> vector)
Constructs a new LeafEntry object with the given parameters. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with type parameters of type NumberVector | |
---|---|
class |
RStarTreeFactory<O extends NumberVector<O,?>>
Factory for regular R*-Trees. |
static class |
RStarTreeFactory.Parameterizer<O extends NumberVector<O,?>>
Parameterization class. |
class |
RStarTreeIndex<O extends NumberVector<?,?>>
The common use of the rstar tree: indexing number vectors. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.math |
---|
Methods in de.lmu.ifi.dbs.elki.math with parameters of type NumberVector | |
---|---|
static double |
MathUtil.pearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors. |
static double |
MathUtil.pearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors. |
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors. |
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.math.linearalgebra |
---|
Methods in de.lmu.ifi.dbs.elki.math.linearalgebra with type parameters of type NumberVector | ||
---|---|---|
|
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector. |
|
|
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector |
Methods in de.lmu.ifi.dbs.elki.math.linearalgebra with parameters of type NumberVector | |
---|---|
void |
ProjectedCentroid.put(NumberVector<?,?> val)
Add a single value with weight 1.0 |
void |
Centroid.put(NumberVector<?,?> val)
Add a single value with weight 1.0 |
void |
CovarianceMatrix.put(NumberVector<?,?> val)
Add a single value with weight 1.0 |
void |
ProjectedCentroid.put(NumberVector<?,?> val,
double weight)
Add data with a given weight. |
void |
Centroid.put(NumberVector<?,?> val,
double weight)
Add data with a given weight. |
void |
CovarianceMatrix.put(NumberVector<?,?> val,
double weight)
Add data with a given weight. |
Method parameters in de.lmu.ifi.dbs.elki.math.linearalgebra with type arguments of type NumberVector | |
---|---|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a relation. |
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a relation. |
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation)
Static constructor from an existing relation. |
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a full relation. |
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static constructor from an existing relation. |
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a full relation. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.math.spacefillingcurves |
---|
Methods in de.lmu.ifi.dbs.elki.math.spacefillingcurves with parameters of type NumberVector | |
---|---|
BigInteger |
ZCurve.Transformer.asBigInteger(NumberVector<?,?> vector)
Transform a single vector. |
byte[] |
ZCurve.Transformer.asByteArray(NumberVector<?,?> vector)
Transform a single vector. |
Constructor parameters in de.lmu.ifi.dbs.elki.math.spacefillingcurves with type arguments of type NumberVector | |
---|---|
ZCurve.Transformer(Relation<? extends NumberVector<?,?>> relation,
DBIDs ids)
Constructor. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.utilities |
---|
Methods in de.lmu.ifi.dbs.elki.utilities with type parameters of type NumberVector | ||
---|---|---|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation)
Returns the centroid as a NumberVector object of the specified database. |
|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids)
Returns the centroid as a NumberVector object of the specified objects stored in the given database. |
|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids,
BitSet dimensions)
Returns the centroid w.r.t. the dimensions specified by the given BitSet as a NumberVector object of the specified objects stored in the given database. |
|
static
|
DatabaseUtil.computeMinMax(Relation<NV> database)
Determines the minimum and maximum values in each dimension of all objects stored in the given database. |
|
static
|
DatabaseUtil.covarianceMatrix(Relation<? extends V> database,
DBIDs ids)
Determines the covariance matrix of the objects stored in the given database. |
|
static
|
DatabaseUtil.exactMedian(Relation<V> relation,
DBIDs ids,
int dimension)
Returns the median of a data set in the given dimension. |
|
static
|
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling method. |
|
static
|
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. |
|
static
|
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. |
|
static
|
DatabaseUtil.variances(Relation<V> database)
Determines the variances in each dimension of all objects stored in the given database. |
|
static
|
DatabaseUtil.variances(Relation<V> database,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored in the given database. |
Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type NumberVector | |
---|---|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?,?>> database,
NumberVector<?,?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored in the given database. |
Method parameters in de.lmu.ifi.dbs.elki.utilities with type arguments of type NumberVector | |
---|---|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?,?>> database,
NumberVector<?,?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored in the given database. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.utilities.referencepoints |
---|
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.projections |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.projections with type parameters of type NumberVector | ||
---|---|---|
|
AbstractProjection.projectRelativeRenderToDataSpace(Vector v,
NV prototype)
Project a relative vector from rendering space to data space. |
|
|
Projection.projectRelativeRenderToDataSpace(Vector v,
NV prototype)
Project a relative vector from rendering space to data space. |
|
|
AbstractProjection.projectRelativeScaledToDataSpace(Vector v,
NV prototype)
Project a relative vector from scaled space to data space. |
|
|
Projection.projectRelativeScaledToDataSpace(Vector v,
NV prototype)
Project a relative vector from scaled space to data space. |
|
|
AbstractProjection.projectRenderToDataSpace(Vector v,
NV prototype)
Project a vector from rendering space to data space. |
|
|
Projection.projectRenderToDataSpace(Vector v,
NV prototype)
Project a vector from rendering space to data space. |
|
|
AbstractProjection.projectScaledToDataSpace(Vector v,
NV factory)
Project a vector from scaled space to data space. |
|
|
Projection.projectScaledToDataSpace(Vector v,
NV factory)
Project a vector from scaled space to data space. |
Methods in de.lmu.ifi.dbs.elki.visualization.projections with parameters of type NumberVector | |
---|---|
double[] |
AffineProjection.fastProjectDataToRenderSpace(NumberVector<?,?> data)
|
double |
Simple1D.fastProjectDataToRenderSpace(NumberVector<?,?> data)
|
double |
Projection1D.fastProjectDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
double[] |
Simple2D.fastProjectDataToRenderSpace(NumberVector<?,?> data)
|
double[] |
Projection2D.fastProjectDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
double[] |
AffineProjection.fastProjectRelativeDataToRenderSpace(NumberVector<?,?> data)
|
double |
Simple1D.fastProjectRelativeDataToRenderSpace(NumberVector<?,?> data)
|
double |
Projection1D.fastProjectRelativeDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
double[] |
Simple2D.fastProjectRelativeDataToRenderSpace(NumberVector<?,?> data)
|
double[] |
Projection2D.fastProjectRelativeDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
Vector |
AbstractProjection.projectDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
Vector |
Projection.projectDataToRenderSpace(NumberVector<?,?> data)
Project a data vector from data space to rendering space. |
Vector |
AbstractProjection.projectDataToScaledSpace(NumberVector<?,?> data)
Project a data vector from data space to scaled space. |
Vector |
Projection.projectDataToScaledSpace(NumberVector<?,?> data)
Project a data vector from data space to scaled space. |
Vector |
AbstractProjection.projectRelativeDataToRenderSpace(NumberVector<?,?> data)
Project a relative data vector from data space to rendering space. |
Vector |
Projection.projectRelativeDataToRenderSpace(NumberVector<?,?> data)
Project a relative data vector from data space to rendering space. |
Vector |
AbstractProjection.projectRelativeDataToScaledSpace(NumberVector<?,?> data)
Project a relative data vector from data space to scaled space. |
Vector |
Projection.projectRelativeDataToScaledSpace(NumberVector<?,?> data)
Project a relative data vector from data space to scaled space. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.projector |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.projector with type parameters of type NumberVector | |
---|---|
class |
HistogramProjector<V extends NumberVector<?,?>>
ScatterPlotProjector is responsible for producing a set of scatterplot visualizations. |
class |
ScatterPlotProjector<V extends NumberVector<?,?>>
ScatterPlotProjector is responsible for producing a set of scatterplot visualizations. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.scales |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.scales with type parameters of type NumberVector | ||
---|---|---|
static
|
Scales.calcScales(Relation<O> db)
Compute a linear scale for each dimension. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.svg |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.svg with type parameters of type NumberVector | ||
---|---|---|
static
|
SVGHyperSphere.drawCross(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "cross" hypersphere |
|
static
|
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "euclidean" hypersphere |
|
static
|
SVGHyperCube.drawFilled(SVGPlot svgp,
String cls,
Projection2D proj,
V min,
V max)
Filled hypercube. |
|
static
|
SVGHyperCube.drawFrame(SVGPlot svgp,
Projection2D proj,
V min,
V max)
Wireframe hypercube. |
|
static
|
SVGHyperSphere.drawLp(SVGPlot svgp,
Projection2D proj,
V mid,
D rad,
double p)
Wireframe "Lp" hypersphere |
|
static
|
SVGHyperSphere.drawManhattan(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "manhattan" hypersphere |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.visualizers |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers that return types with arguments of type NumberVector | |
---|---|
static Iterator<Relation<? extends NumberVector<?,?>>> |
VisualizerUtil.iterateVectorFieldRepresentations(Result result)
Filter for number vector field representations |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d with type parameters of type NumberVector | |
---|---|
class |
P1DHistogramVisualizer<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing a histogram representing the distribution of the database's objects. |
static class |
P1DHistogramVisualizer.Factory<NV extends NumberVector<NV,?>>
Visualizer factory for 1D histograms |
static class |
P1DHistogramVisualizer.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
Uses of NumberVector in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type NumberVector | |
---|---|
class |
AbstractTooltipVisualization<NV extends NumberVector<NV,?>>
General base class for a tooltip visualizer. |
class |
AxisVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing axes, including labeling. |
static class |
AxisVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for axis visualizations |
class |
BubbleVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing bubbles. |
static class |
BubbleVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for producing bubble visualizations |
static class |
BubbleVisualization.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
class |
ClusterConvexHullVisualization<NV extends NumberVector<NV,?>>
Visualizer for generating an SVG-Element containing the convex hull of each cluster. |
static class |
ClusterConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing the convex hull of a cluster. |
class |
ClusteringVisualization<NV extends NumberVector<NV,?>>
Visualize a clustering using different markers for different clusters. |
static class |
ClusteringVisualization.Factory<NV extends NumberVector<NV,?>>
Visualization factory |
class |
ClusterMeanVisualization<NV extends NumberVector<NV,?>>
Visualize the mean of a KMeans-Clustering |
static class |
ClusterMeanVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing a marker for the mean in a KMeans-Clustering |
class |
ClusterOrderVisualization<NV extends NumberVector<NV,?>>
Cluster order visualizer. |
static class |
ClusterOrderVisualization.Factory<NV extends NumberVector<NV,?>>
Visualize an OPTICS cluster order by drawing connection lines. |
class |
DotVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing "dots" as markers representing the Database's objects. |
static class |
DotVisualization.Factory<NV extends NumberVector<NV,?>>
The visualization factory |
class |
EMClusterVisualization<NV extends NumberVector<NV,?>>
Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation |
static class |
EMClusterVisualization.Factory<NV extends NumberVector<NV,?>>
Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation |
class |
MoveObjectsToolVisualization<NV extends NumberVector<NV,?>>
Tool to move the currently selected objects. |
static class |
MoveObjectsToolVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for changing objects in the database |
class |
P2DVisualization<NV extends NumberVector<?,?>>
Default class to handle 2D projected visualizations. |
class |
PolygonVisualization<V extends NumberVector<?,?>>
Renders PolygonsObject in the data set. |
class |
ReferencePointsVisualization<NV extends NumberVector<NV,?>>
The actual visualization instance, for a single projection |
static class |
ReferencePointsVisualization.Factory<NV extends NumberVector<NV,?>>
Generates a SVG-Element visualizing reference points. |
class |
SelectionConvexHullVisualization<NV extends NumberVector<NV,?>>
Visualizer for generating an SVG-Element containing the convex hull of the selected points |
static class |
SelectionConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing the convex hull of the selected points |
class |
SelectionCubeVisualization<NV extends NumberVector<NV,?>>
Visualizer for generating an SVG-Element containing a cube as marker representing the selected range for each dimension |
static class |
SelectionCubeVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing a cube as marker representing the selected range for each dimension |
static class |
SelectionCubeVisualization.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
class |
SelectionDotVisualization<NV extends NumberVector<NV,?>>
Visualizer for generating an SVG-Element containing dots as markers representing the selected Database's objects. |
static class |
SelectionDotVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing dots as markers representing the selected Database's objects. |
class |
SelectionToolCubeVisualization<NV extends NumberVector<NV,?>>
Tool-Visualization for the tool to select ranges |
static class |
SelectionToolCubeVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for selecting ranges and the inclosed objects |
class |
SelectionToolDotVisualization<NV extends NumberVector<NV,?>>
Tool-Visualization for the tool to select objects |
static class |
SelectionToolDotVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for selecting objects |
class |
ToolBox2DVisualization<NV extends NumberVector<NV,?>>
Renders a tool box on the left of the 2D visualization |
static class |
ToolBox2DVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers for a toolbox |
class |
TooltipScoreVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing Tooltips. |
static class |
TooltipScoreVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tooltip visualizers |
static class |
TooltipScoreVisualization.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
class |
TooltipStringVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing Tooltips. |
static class |
TooltipStringVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
class |
TreeMBRVisualization<NV extends NumberVector<NV,?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry>
Visualize the bounding rectangles of an R-Tree based index. |
static class |
TreeMBRVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
static class |
TreeMBRVisualization.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
class |
TreeSphereVisualization<NV extends NumberVector<NV,?>,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<NV,D,N,E>,E extends MTreeEntry<D>>
Visualize the bounding sphere of a metric index. |
static class |
TreeSphereVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
static class |
TreeSphereVisualization.Factory.Parameterizer<NV extends NumberVector<NV,?>>
Parameterization class. |
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type NumberVector | ||
---|---|---|
private static
|
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private static
|
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |