Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask
main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.classification |
Classification algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN
Generalized DBSCAN is an abstraction of the original DBSCAN idea,
that allows the use of arbitrary "neighborhood" and "core point" predicates.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel |
Parallel versions of Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in
evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining.associationrules |
Association rule mining.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance.parallel |
Parallel implementations of distance-based outlier detectors.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic |
Outlier detection algorithms based on intrinsic dimensionality.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
Weighted Neighborhood definitions
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods
Methods that detect outliers in subspaces (projections) of the data set.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label
outliers.
|
de.lmu.ifi.dbs.elki.algorithm.projection |
Data projections (see also preprocessing filters for basic projections).
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms.
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache
builders.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.evaluation |
Functionality for the evaluation of algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results
|
de.lmu.ifi.dbs.elki.evaluation.clustering.extractor |
Classes to extract clusterings from hierarchical clustering.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI
|
de.lmu.ifi.dbs.elki.workflow |
Work flow packages, e.g., following the usual KDD model.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation
|
tutorial.outlier |
Tutorials on implementing outlier detection methods in ELKI.
|
Modifier and Type | Method and Description |
---|---|
Result |
NullAlgorithm.run(Database database) |
Result |
Algorithm.run(Database database)
Runs the algorithm.
|
R |
AbstractAlgorithm.run(Database database) |
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
KNNDistancesSampler.KNNDistanceOrderResult |
KNNDistancesSampler.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
database.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
given database based on a linear correlation PCA.
|
Modifier and Type | Method and Description |
---|---|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm, with a separate query set.
|
Result |
KNNBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
ValidateApproximativeKNNIndex.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Method and Description |
---|---|
void |
Classifier.buildClassifier(Database database,
Relation<? extends ClassLabel> classLabels)
Performs the training.
|
void |
PriorProbabilityClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes.
|
void |
KNNClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labels) |
R |
AbstractClassifier.run(Database database)
Deprecated.
|
Result |
KNNClassifier.run(Database database)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
C |
ClusteringAlgorithm.run(Database database) |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<PrototypeModel<O>> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids)
Compute the initial similarity matrix.
|
double[][] |
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Field and Description |
---|---|
private Database |
AbstractBiclustering.database
Keeps the currently set database.
|
Modifier and Type | Method and Description |
---|---|
Database |
AbstractBiclustering.getDatabase()
Getter for database.
|
Modifier and Type | Method and Description |
---|---|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
CorrelationClusterOrder |
HiCO.run(Database db,
Relation<V> relation) |
Clustering<DimensionModel> |
COPAC.run(Database database,
Relation<V> relation)
Run the COPAC algorithm.
|
Clustering<CorrelationModel> |
ERiC.run(Database database,
Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Constructor and Description |
---|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<TextbookMultivariateGaussianModel> |
TextbookMultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
java.util.List<DiagonalGaussianModel> |
DiagonalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
java.util.List<SphericalGaussianModel> |
SphericalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
java.util.List<MultivariateGaussianModel> |
MultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
java.util.List<? extends EMClusterModel<M>> |
EMClusterModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df)
Build the initial models
|
java.util.List<TwoPassMultivariateGaussianModel> |
TwoPassMultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
Clustering<M> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Modifier and Type | Field and Description |
---|---|
private Database |
ParallelGeneralizedDBSCAN.Instance.database
Database for cloning neighbor predicates.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ParallelGeneralizedDBSCAN.run(Database database) |
Constructor and Description |
---|
Instance(Database database,
NeighborPredicate<T> npreds,
CorePredicate<? super T> corepred,
boolean coremodel)
Full Constructor
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
HierarchicalClusteringAlgorithm.run(Database db) |
PointerDensityHierarchyRepresentationResult |
HDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
NNChain.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
AGNES.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerPrototypeHierarchyRepresentationResult |
MiniMax.run(Database db,
Relation<O> relation)
Run the algorithm on a database.
|
PointerHierarchyRepresentationResult |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database.
|
PointerHierarchyRepresentationResult |
MiniMaxAnderberg.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerPrototypeHierarchyRepresentationResult |
MiniMaxNNChain.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
AnderbergHierarchicalClustering.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerDensityHierarchyRepresentationResult |
SLINKHDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.run(Database database) |
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.run(Database database) |
Clustering<Model> |
ClustersWithNoiseExtraction.run(Database database) |
Clustering<DendrogramModel> |
AbstractCutDendrogram.run(Database database) |
Modifier and Type | Method and Description |
---|---|
protected double[][] |
AbstractKMeans.initialMeans(Database database,
Relation<V> relation)
Choose the initial means.
|
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<MedoidModel> |
FastCLARA.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
SingleAssignmentKMeans.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansSort.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansAnnulus.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansExponion.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<MeanModel> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansElkan.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansHamerly.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMinusMinus.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<MedoidModel> |
KMedoidsPark.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<KMeansModel> |
KMeansSimplifiedElkan.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
CLARA.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansCompare.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
CLARANS.run(Database database,
Relation<V> relation) |
Clustering<M> |
XMeans.run(Database database,
Relation<V> relation)
Run the algorithm on a database and relation.
|
Clustering<MedoidModel> |
FastCLARANS.run(Database database,
Relation<V> relation) |
protected java.util.List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomUniformGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means
|
double[][] |
ParkInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
PredefinedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
LABInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
OstrovskyInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomNormalGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel> |
ParallelLloydKMeans.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
private void |
ExternalClustering.attachToRelation(Database database,
Relation<?> r,
it.unimi.dsi.fastutil.ints.IntArrayList assignment,
java.util.ArrayList<java.lang.String> name)
Build a clustering from the file result.
|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
ClusterOrder |
OPTICSTypeAlgorithm.run(Database database) |
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
ClusterOrder |
OPTICSList.run(Database db,
Relation<O> relation) |
abstract ClusterOrder |
GeneralizedOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
abstract ClusterOrder |
AbstractOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
ClusterOrder |
OPTICSHeap.run(Database db,
Relation<O> relation) |
ClusterOrder |
DeLiClu.run(Database database,
Relation<V> relation) |
ClusterOrder |
FastOPTICS.run(Database db,
Relation<V> rel)
Run the algorithm.
|
Constructor and Description |
---|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Modifier and Type | Method and Description |
---|---|
Clustering<SubspaceModel> |
DiSH.run(Database db,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<SubspaceModel> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
Clustering<SubspaceModel> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
ClusterOrder |
HiSC.run(Database db,
Relation<V> relation) |
Clustering<SubspaceModel> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
protected Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
protected Cluster<SubspaceModel> |
FastDOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of FastDOC, finding a single cluster.
|
Constructor and Description |
---|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Modifier and Type | Method and Description |
---|---|
FDBSCANNeighborPredicate.Instance |
FDBSCANNeighborPredicate.instantiate(Database database) |
Clustering<?> |
RepresentativeUncertainClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
C |
CenterOfMassMetaClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
Clustering<?> |
UKMeans.run(Database database,
Relation<DiscreteUncertainObject> relation)
Run the clustering.
|
Modifier and Type | Method and Description |
---|---|
FrequentItemsetsResult |
Eclat.run(Database db,
Relation<BitVector> relation)
Run the Eclat algorithm
|
FrequentItemsetsResult |
FPGrowth.run(Database db,
Relation<BitVector> relation)
Run the FP-Growth algorithm
|
Modifier and Type | Method and Description |
---|---|
AssociationRuleResult |
AssociationRuleGeneration.run(Database database)
Run on a database
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutlierAlgorithm.run(Database database) |
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection.
|
OutlierResult |
DWOF.run(Database database,
Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by
calling all the other methods in the proper order.
|
OutlierResult |
SimpleCOP.run(Database database,
Relation<V> data) |
Modifier and Type | Method and Description |
---|---|
private void |
FastABOD.fastABOD(Database db,
Relation<V> relation,
DBIDs ids,
WritableDoubleDataStore abodvalues,
DoubleMinMax minmaxabod)
Full kernel-based version.
|
private boolean |
FastABOD.kNNABOD(Database db,
Relation<V> relation,
DBIDs ids,
WritableDoubleDataStore abodvalues,
DoubleMinMax minmaxabod)
Simpler kNN based, can use more indexing.
|
OutlierResult |
LBABOD.run(Database db,
Relation<V> relation)
Run LB-ABOD on the data set.
|
OutlierResult |
FastABOD.run(Database db,
Relation<V> relation)
Run Fast-ABOD on the data set.
|
OutlierResult |
ABOD.run(Database db,
Relation<V> relation)
Run ABOD on the data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SilhouetteOutlierDetection.run(Database database) |
OutlierResult |
CBLOF.run(Database database,
Relation<O> relation)
Runs the CBLOF algorithm on the given database.
|
OutlierResult |
KMeansOutlierDetection.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm.
|
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
protected abstract DoubleDataStore |
AbstractDBOutlier.computeOutlierScores(Database database,
Relation<O> relation,
double d)
computes an outlier score for each object of the database.
|
protected DoubleDataStore |
DBOutlierDetection.computeOutlierScores(Database database,
Relation<O> relation,
double d) |
protected DoubleDataStore |
DBOutlierScore.computeOutlierScores(Database database,
Relation<O> relation,
double d) |
OutlierResult |
ReferenceBasedOutlierDetection.run(Database database,
Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.
|
OutlierResult |
HilOut.run(Database database,
Relation<O> relation) |
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
|
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
KNNDD.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
LocalIsolationCoefficient.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelKNNWeightOutlier.run(Database database,
Relation<O> relation)
Run the parallel kNN weight outlier detector.
|
OutlierResult |
ParallelKNNOutlier.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
IntrinsicDimensionalityOutlier.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
IDOS.run(Database database,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private Pair<Pair<KNNQuery<O>,KNNQuery<O>>,Pair<RKNNQuery<O>,RKNNQuery<O>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
private Pair<KNNQuery<O>,KNNQuery<O>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
protected Pair<KNNQuery<O>,KNNQuery<O>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
OutlierResult |
ALOCI.run(Database database,
Relation<O> relation) |
OutlierResult |
LDF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
SimpleKernelDensityLOF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
INFLO.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
OnlineLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
SimplifiedLOF.run(Database database,
Relation<O> relation)
Run the Simple LOF algorithm.
|
OutlierResult |
LOF.run(Database database,
Relation<O> relation)
Runs the LOF algorithm on the given database.
|
OutlierResult |
KDEOS.run(Database database,
Relation<O> rel)
Run the KDEOS outlier detection algorithm.
|
OutlierResult |
COF.run(Database database,
Relation<O> relation)
Runs the COF algorithm on the given database.
|
OutlierResult |
LDOF.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
FlexibleLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress) . |
OutlierResult |
VarianceOfVolume.run(Database database,
Relation<O> relation)
Runs the VOV algorithm on the given database.
|
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database.
|
OutlierResult |
LOCI.run(Database database,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelSimplifiedLOF.run(Database database,
Relation<O> relation) |
OutlierResult |
ParallelLOF.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SimpleOutlierEnsemble.run(Database database) |
OutlierResult |
RescaleMetaOutlierAlgorithm.run(Database database) |
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector> relation)
Run the algorithm on a data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
CTLuScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Run the algorithm.
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
CTLuMeanMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector> relationy)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Database database,
Relation<? extends O> relation)
Method to load the external neighbors.
|
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Database database,
Relation<?> relation) |
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Database database,
Relation<?> relation)
Method to load the external neighbors.
|
Modifier and Type | Method and Description |
---|---|
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Database database,
Relation<? extends O> relation) |
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutRankS1.run(Database database) |
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialGeneratedOutlier.run(Database database) |
OutlierResult |
ByLabelOutlier.run(Database database) |
Modifier and Type | Method and Description |
---|---|
Relation<DoubleVector> |
BarnesHutTSNE.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
HistogramResult |
DistanceStatisticsWithClasses.run(Database database) |
Result |
AddUniformScale.run(Database database) |
HistogramResult |
EvaluateRankingQuality.run(Database database) |
Result |
AddSingleScale.run(Database database) |
Result |
HopkinsStatisticClusteringTendency.run(Database database,
Relation<NumberVector> relation)
Runs the algorithm in the timed evaluation part.
|
HistogramResult |
RankingQualityHistogram.run(Database database,
Relation<O> relation)
Process a database
|
Result |
EstimateIntrinsicDimensionality.run(Database database,
Relation<O> relation) |
CollectionResult<double[]> |
DistanceQuantileSampler.run(Database database,
Relation<O> rel)
Run the distance quantile sampler.
|
CollectionResult<double[]> |
AveragePrecisionAtK.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
EvaluateRetrievalPerformance.RetrievalPerformanceResult |
EvaluateRetrievalPerformance.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
Result |
RangeQuerySelectivity.run(Database database,
Relation<V> relation) |
Modifier and Type | Field and Description |
---|---|
private Database |
CacheDoubleDistanceInOnDiskMatrix.database
Data source to process.
|
private Database |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer.database
Data source to process.
|
private Database |
CacheDoubleDistanceRangeQueries.database
Data source to process.
|
private Database |
CacheDoubleDistanceRangeQueries.Parameterizer.database
Data source to process.
|
private Database |
CacheFloatDistanceInOnDiskMatrix.database
Data source to process.
|
private Database |
CacheFloatDistanceInOnDiskMatrix.Parameterizer.database
Data source to process.
|
private Database |
CacheDoubleDistanceKNNLists.database
Data source to process.
|
private Database |
CacheDoubleDistanceKNNLists.Parameterizer.database
Data source to process.
|
private Database |
PrecomputeDistancesAsciiApplication.database
Data source to process.
|
private Database |
PrecomputeDistancesAsciiApplication.Parameterizer.database
Data source to process.
|
Constructor and Description |
---|
CacheDoubleDistanceInOnDiskMatrix(Database database,
DistanceFunction<? super O> distance,
java.io.File out)
Constructor.
|
CacheDoubleDistanceKNNLists(Database database,
DistanceFunction<? super O> distance,
int k,
java.io.File out)
Constructor.
|
CacheDoubleDistanceRangeQueries(Database database,
DistanceFunction<? super O> distance,
double radius,
java.io.File out)
Constructor.
|
CacheFloatDistanceInOnDiskMatrix(Database database,
DistanceFunction<? super O> distance,
java.io.File out)
Constructor.
|
PrecomputeDistancesAsciiApplication(Database database,
DistanceFunction<? super O> distance,
java.io.File out)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
UpdatableDatabase
Database API with updates.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDatabase
Abstract base class for database API implementations.
|
class |
HashmapDatabase
Database storing data using hashtable storage, and thus allowing additional
and removal of objects.
|
class |
ProxyDatabase
A proxy database to use e.g. for projections and partitions.
|
class |
StaticArrayDatabase
This database class uses array-based storage and thus does not allow for
dynamic insert, delete and update operations.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Database |
AbstractDatabase.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
static java.util.SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Database database)
Retrieves all class labels within the database.
|
static <O> DistanceQuery<O> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
static <O> KNNQuery<O> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get a KNN query object for the given distance function.
|
static ArrayModifiableDBIDs |
DatabaseUtil.getObjectsByLabelMatch(Database database,
java.util.regex.Pattern name_pattern)
Find object by matching their labels.
|
static <O> RangeQuery<O> |
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get a range query object for the given distance function for radius-based
neighbor search.
|
static <O> SimilarityQuery<O> |
QueryUtil.getSimilarityQuery(Database database,
SimilarityFunction<? super O> similarityFunction,
java.lang.Object... hints)
Get a similarity query, automatically choosing a relation.
|
static Relation<java.lang.String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels.
|
static Relation<java.lang.String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.
|
static <O> DistanceQuery<O> |
DatabaseUtil.precomputedDistanceQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
Logging log)
Get (or create) a precomputed distance query for the database.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
int k)
Get (or create) a precomputed kNN query for the database.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceQuery<O> dq,
int k)
Get (or create) a precomputed kNN query for the database.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Database database)
Constructor, proxying all relations of an existing database.
|
Modifier and Type | Method and Description |
---|---|
static void |
AutomaticEvaluation.ensureClusteringResult(Database db,
Result result)
Ensure that the result contains at least one Clustering.
|
Modifier and Type | Method and Description |
---|---|
protected void |
EvaluateClustering.evaluteResult(Database db,
Clustering<?> c,
Clustering<?> refc)
Evaluate a clustering result.
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
CutDendrogramByHeightExtractor.DummyHierarchicalClusteringAlgorithm.run(Database db) |
Modifier and Type | Method and Description |
---|---|
double |
EvaluateSquaredErrors.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateConcordantPairs.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluatePBMIndex.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDaviesBouldin.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateCIndex.evaluateClustering(Database db,
Relation<? extends O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDBCV.evaluateClustering(Database db,
Relation<O> rel,
Clustering<?> cl)
Evaluate a single clustering.
|
double |
EvaluateSilhouette.evaluateClustering(Database db,
Relation<O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
Modifier and Type | Method and Description |
---|---|
HistogramResult |
ComputeOutlierHistogram.evaluateOutlierResult(Database database,
OutlierResult or)
Evaluate a single outlier result as histogram.
|
Modifier and Type | Method and Description |
---|---|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier)
Find the first database result in the tree.
|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier,
Result baseResult)
Find the first database result in the tree.
|
Modifier and Type | Method and Description |
---|---|
static SelectionResult |
SelectionResult.ensureSelectionResult(Database db)
Ensure that there also is a selection container object.
|
private void |
KMLOutputHandler.writeClusteringResult(javax.xml.stream.XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
private void |
KMLOutputHandler.writeOutlierResult(javax.xml.stream.XMLStreamWriter xmlw,
OutlierResult outlierResult,
Database database) |
Modifier and Type | Method and Description |
---|---|
void |
TextWriter.output(Database db,
Result r,
StreamFactory streamOpener,
java.util.regex.Pattern filter)
Stream output.
|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBIDRef objID,
java.util.List<Relation<?>> ra) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
java.util.List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
java.util.List<Relation<?>> ra) |
Modifier and Type | Method and Description |
---|---|
static java.lang.String |
VisualizerParameterizer.getTitle(Database db,
Result result)
Try to automatically generate a title for this.
|
Modifier and Type | Field and Description |
---|---|
private Database |
InputStep.database
Holds the database to have the algorithms run with.
|
protected Database |
InputStep.Parameterizer.database
Holds the database to have the algorithms run on.
|
Modifier and Type | Method and Description |
---|---|
Database |
InputStep.getDatabase()
Get the database to use.
|
Modifier and Type | Method and Description |
---|---|
Result |
AlgorithmStep.runAlgorithms(Database database)
Run algorithms.
|
void |
EvaluationStep.runEvaluators(ResultHierarchy hier,
Database db) |
void |
OutputStep.runResultHandlers(ResultHierarchy hier,
Database db)
Run the result handlers.
|
Constructor and Description |
---|
InputStep(Database database)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Result |
NaiveAgglomerativeHierarchicalClustering1.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
NaiveAgglomerativeHierarchicalClustering4.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering2.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering3.run(Database db,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
Tutorial note: the signature of this method depends on the types
that we requested in the
ODIN.getInputTypeRestriction() method. |
OutlierResult |
DistanceStddevOutlier.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm
|
Copyright © 2019 ELKI Development Team. License information.