@Reference(authors="Hans-Peter Kriegel, Martin Pfeifle", title="Density-based clustering of uncertain data", booktitle="Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)", url="https://doi.org/10.1145/1081870.1081955", bibkey="DBLP:conf/kdd/KriegelP05") public class FDBSCANNeighborPredicate extends java.lang.Object implements NeighborPredicate<DBIDs>
Reference:
Hans-Peter Kriegel, Martin Pfeifle
Density-based clustering of uncertain data
Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)
This class is a NeighborPredicate presenting this Algorithm in use with
.
GeneralizedDBSCAN
Only Euclidean distance is supported, because of the pruning strategy described in the original article which needs minimum and maximum distances of bounding rectangles. Index support is not yet available.
Modifier and Type | Class and Description |
---|---|
static class |
FDBSCANNeighborPredicate.Instance
Instance of the neighbor predicate.
|
static class |
FDBSCANNeighborPredicate.Parameterizer
Parameterizer class.
|
Modifier and Type | Field and Description |
---|---|
protected double |
epsilon
Epsilon radius
|
protected RandomFactory |
rand
The random generator to draw the samples with.
|
protected int |
sampleSize
The size of samplesets that should be drawn for neighborcheck.
|
protected double |
threshold
The relative amount of epsilon-close pairings determined by the
neighborcheck.
|
Constructor and Description |
---|
FDBSCANNeighborPredicate(double epsilon,
int sampleSize,
double threshold,
RandomFactory seed)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
TypeInformation |
getInputTypeRestriction()
Input data type restriction.
|
SimpleTypeInformation<DBIDs> |
getOutputType()
Output data type information.
|
FDBSCANNeighborPredicate.Instance |
instantiate(Database database)
Instantiate for a database.
|
protected double epsilon
protected int sampleSize
protected double threshold
protected RandomFactory rand
public FDBSCANNeighborPredicate(double epsilon, int sampleSize, double threshold, RandomFactory seed)
epsilon
- Maximum distancesampleSize
- Sampling sizethreshold
- Threshold on how many samples are within the radiusseed
- Random generator for samplingpublic FDBSCANNeighborPredicate.Instance instantiate(Database database)
NeighborPredicate
instantiate
in interface NeighborPredicate<DBIDs>
database
- Database to instantiate forpublic TypeInformation getInputTypeRestriction()
NeighborPredicate
getInputTypeRestriction
in interface NeighborPredicate<DBIDs>
public SimpleTypeInformation<DBIDs> getOutputType()
NeighborPredicate
getOutputType
in interface NeighborPredicate<DBIDs>
Copyright © 2019 ELKI Development Team. License information.