O - the type of objects processed by this algorithm@Title(value="KNNDD: k-Nearest Neighbor Data Description") @Reference(authors="D. de Ridder, D. M. J. Tax, R. P. W. Duin", title="An experimental comparison of one-class classification methods", booktitle="Proc. 4th Ann. Conf. Advanced School for Computing and Imaging (ASCI\'98)", url="http://prlab.tudelft.nl/sites/default/files/asci_98.pdf", bibkey="conf/asci/deRidderTD98") public class KNNDD<O> extends AbstractDistanceBasedAlgorithm<O,OutlierResult> implements OutlierAlgorithm
A variation inbetween of KNN outlier and LOF, comparing the nearest neighbor distance of a point to the nearest neighbor distance of the nearest neighbor.
The initial description used k=1, where this equation makes most sense. For k > 1, one may want to use averaging similar to LOF.
Reference ("1-Nearest-Neighbor method"):
 D. de Ridder, D. M. J. Tax, R. P. W. Duin
 An experimental comparison of one-class classification methods
 Proc. 4th Ann. Conf. Advanced School for Computing and Imaging (ASCI'98)
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
KNNDD.Parameterizer<O>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private int | 
k
The parameter k (including query point!) 
 | 
private static Logging | 
LOG
The logger for this class. 
 | 
ALGORITHM_IDDISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
KNNDD(DistanceFunction<? super O> distanceFunction,
     int k)
Constructor for a single kNN query. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
TypeInformation[] | 
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. 
 | 
protected Logging | 
getLogger()
Get the (STATIC) logger for this class. 
 | 
OutlierResult | 
run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
run(Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
getDistanceFunctionrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
private int k
public KNNDD(DistanceFunction<? super O> distanceFunction, int k)
distanceFunction - distance function to usek - Value of k (excluding query point!)public OutlierResult run(Database database, Relation<O> relation)
database - Database (no longer used)relation - Data relationpublic OutlierResult run(Relation<O> relation)
relation - Data relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<OutlierResult>Copyright © 2019 ELKI Development Team. License information.