O
- Data typepublic class EstimateIntrinsicDimensionality<O> extends AbstractDistanceBasedAlgorithm<O,Result>
Modifier and Type | Class and Description |
---|---|
static class |
EstimateIntrinsicDimensionality.Parameterizer<O>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected IntrinsicDimensionalityEstimator |
estimator
Estimation method.
|
protected double |
krate
Number of neighbors to use.
|
private static Logging |
LOG
Class logger.
|
protected double |
samples
Number of samples to draw.
|
ALGORITHM_ID
DISTANCE_FUNCTION_ID
Constructor and Description |
---|
EstimateIntrinsicDimensionality(DistanceFunction<? super O> distanceFunction,
IntrinsicDimensionalityEstimator estimator,
double krate,
double samples)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Result |
run(Database database,
Relation<O> relation) |
getDistanceFunction
run
private static final Logging LOG
protected double krate
protected double samples
protected IntrinsicDimensionalityEstimator estimator
public EstimateIntrinsicDimensionality(DistanceFunction<? super O> distanceFunction, IntrinsicDimensionalityEstimator estimator, double krate, double samples)
distanceFunction
- Distance functionestimator
- Estimatorkrate
- kNN ratesamples
- Sample sizepublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Result>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Result>
Copyright © 2019 ELKI Development Team. License information.