Uses of Class
de.lmu.ifi.dbs.elki.utilities.documentation.Description

Packages that use Description
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.datasource Data normalization (and reconstitution) of data sets. 
de.lmu.ifi.dbs.elki.datasource.parser Parsers for different file formats and data types. 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.external Distance functions using external data sources. 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.preference Indexes storing preference vectors. 
de.lmu.ifi.dbs.elki.index.preprocessed.snn Indexes providing nearest neighbor sets 
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj Index using a preprocessed local subspaces. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar RStarTree 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm
 

Classes in de.lmu.ifi.dbs.elki.algorithm with annotations of type Description
 class APRIORI
          Provides the APRIORI algorithm for Mining Association Rules.
 class DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
           Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA.
 class DummyAlgorithm<O extends NumberVector<?,?>>
          Dummy Algorithm, which just iterates over all points once, doing a 10NN query each.
 class KNNDistanceOrder<O,D extends Distance<D>>
          Provides an order of the kNN-distances for all objects within the database.
 class KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
          Joins in a given spatial database to each object its k-nearest neighbors.
 class MaterializeDistances<O,D extends NumberDistance<D,?>>
          Algorithm to materialize all the distances in a data set.
 class NullAlgorithm
          Null Algorithm, which does nothing.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with annotations of type Description
 class DBSCAN<O,D extends Distance<D>>
          DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
 class DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
          DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database.
 class EM<V extends NumberVector<V,?>>
          Provides the EM algorithm (clustering by expectation maximization).
 class KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the k-means algorithm.
 class OPTICS<O,D extends Distance<D>>
          OPTICS provides the OPTICS algorithm.
 class SLINK<O,D extends Distance<D>>
          Efficient implementation of the Single-Link Algorithm SLINK of R.
 class SNNClustering<O>
           Shared nearest neighbor clustering.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with annotations of type Description
 class CASH
          Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform.
 class COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.
 class ERiC<V extends NumberVector<V,?>>
          Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
 class FourC<V extends NumberVector<V,?>>
          4C identifies local subgroups of data objects sharing a uniform correlation.
 class HiCO<V extends NumberVector<V,?>>
          Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters.
 class ORCLUS<V extends NumberVector<V,?>>
          ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with annotations of type Description
 class CLIQUE<V extends NumberVector<V,?>>
          

Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality.

 class DiSH<V extends NumberVector<V,?>>
           Algorithm for detecting subspace hierarchies.
 class HiSC<V extends NumberVector<V,?>>
          Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters.
 class PreDeCon<V extends NumberVector<V,?>>
          

PreDeCon computes clusters of subspace preference weighted connected points.

 class PROCLUS<V extends NumberVector<V,?>>
          

Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces.

 class SUBCLU<V extends NumberVector<V,?>>
           Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial with annotations of type Description
 class ByLabelClustering
          Pseudo clustering using labels.
 class ByLabelHierarchicalClustering
          Pseudo clustering using labels.
 class TrivialAllInOne
          Trivial pseudo-clustering that just considers all points to be one big cluster.
 class TrivialAllNoise
          Trivial pseudo-clustering that just considers all points to be noise.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with annotations of type Description
 class ABOD<V extends NumberVector<V,?>>
          Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets.
 class AggarwalYuEvolutionary<V extends NumberVector<?,?>>
          EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data.
 class AggarwalYuNaive<V extends NumberVector<?,?>>
          BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers.
 class DBOutlierDetection<O,D extends Distance<D>>
          Simple distanced based outlier detection algorithm.
 class DBOutlierScore<O,D extends Distance<D>>
          Compute percentage of neighbors in the given neighborhood with size d.
 class EMOutlier<V extends NumberVector<V,?>>
          outlier detection algorithm using EM Clustering.
 class GaussianModel<V extends NumberVector<V,?>>
          Outlier have smallest GMOD_PROB: the outlier scores is the probability density of the assumed distribution.
 class GaussianUniformMixture<V extends NumberVector<V,?>>
          Outlier detection algorithm using a mixture model approach.
 class INFLO<O,D extends NumberDistance<D,?>>
          INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006
Ranking outliers using symmetric neighborhood relationship
In Proc.
 class KNNOutlier<O,D extends NumberDistance<D,?>>
           Outlier Detection based on the distance of an object to its k nearest neighbor.
 class KNNWeightOutlier<O,D extends NumberDistance<D,?>>
          Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
 class LDOF<O,D extends NumberDistance<D,?>>
           Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database.
 class LOCI<O,D extends NumberDistance<D,?>>
          Fast Outlier Detection Using the "Local Correlation Integral".
 class LOF<O,D extends NumberDistance<D,?>>
           Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k).
 class LoOP<O,D extends NumberDistance<D,?>>
          LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability.
 class OPTICSOF<O,D extends NumberDistance<D,?>>
          OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database.
 class ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
           provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.
 class SOD<V extends NumberVector<V,?>>
           
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with annotations of type Description
 class CTLuMoranScatterplotOutlier<N>
          Moran scatterplot outliers, based on the standardized deviation from the local and global means.
 class CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
          Spatial outlier detection based on random walks.
 class CTLuScatterplotOutlier<N>
          Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value.
 class CTLuZTestOutlier<N>
          Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood.
 class SLOM<N,O,D extends NumberDistance<D,?>>
          SLOM: a new measure for local spatial outliers Reference:
Sanjay Chawla and Pei Sun
SLOM: a new measure for local spatial outliers
in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.
 class TrimmedMeanApproach<N>
          A Trimmed Mean Approach to Finding Spatial Outliers.
 

Uses of Description in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Classes in de.lmu.ifi.dbs.elki.algorithm.statistics with annotations of type Description
 class DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
          Algorithm to gather statistics over the distance distribution in the data set.
 class EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
 class RankingQualityHistogram<O,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
 

Uses of Description in de.lmu.ifi.dbs.elki.database
 

Classes in de.lmu.ifi.dbs.elki.database with annotations of type Description
 class HashmapDatabase
          Provides a mapping for associations based on a Hashtable and functions to get the next usable ID for insertion, making IDs reusable after deletion of the entry.
 class StaticArrayDatabase
          This database class uses array-based storage and thus does not allow for dynamic insert, delete and update operations.
 

Uses of Description in de.lmu.ifi.dbs.elki.datasource
 

Classes in de.lmu.ifi.dbs.elki.datasource with annotations of type Description
 class EmptyDatabaseConnection
          Pseudo database that is empty.
 class InputStreamDatabaseConnection
          Provides a database connection expecting input from an input stream such as stdin.
 

Uses of Description in de.lmu.ifi.dbs.elki.datasource.parser
 

Classes in de.lmu.ifi.dbs.elki.datasource.parser with annotations of type Description
 class BitVectorLabelParser
          Provides a parser for parsing one BitVector per line, bits separated by whitespace.
 class NumberDistanceParser<D extends NumberDistance<D,N>,N extends Number>
          Provides a parser for parsing one distance value per line.
 class ParameterizationFunctionLabelParser
          Provides a parser for parsing one point per line, attributes separated by whitespace.
 class SparseBitVectorLabelParser
          Provides a parser for parsing one sparse BitVector per line, where the indices of the one-bits are separated by whitespace.
 class SparseFloatVectorLabelParser
           Provides a parser for parsing one point per line, attributes separated by whitespace.
 class TermFrequencyParser
          A parser to load term frequency data, which essentially are sparse vectors with text keys.
 

Uses of Description in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with annotations of type Description
 class HistogramIntersectionDistanceFunction
          Intersection distance for color histograms.
 

Uses of Description in de.lmu.ifi.dbs.elki.distance.distancefunction.external
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.external with annotations of type Description
 class DiskCacheBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class DiskCacheBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 class FileBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class FileBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.knn with annotations of type Description
 class MaterializeKNNAndRKNNPreprocessor<O,D extends Distance<D>>
          A preprocessor for annotation of the k nearest neighbors and the reverse k nearest neighbors (and their distances) to each database object.
 class MaterializeKNNPreprocessor<O,D extends Distance<D>>
          A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.
 class MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector<? super O,?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry<D>>
          A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.
 class PartitionApproximationMaterializeKNNPreprocessor<O,D extends Distance<D>>
          A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.
 class SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<?,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
          A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with annotations of type Description
 class AbstractFilteredPCAIndex<NV extends NumberVector<? extends NV,?>>
          Abstract base class for a local PCA based index.
 class KNNQueryFilteredPCAIndex<NV extends NumberVector<? extends NV,?>>
          Provides the local neighborhood to be considered in the PCA as the k nearest neighbors of an object.
 class RangeQueryFilteredPCAIndex<NV extends NumberVector<? extends NV,?>>
          Provides the local neighborhood to be considered in the PCA as the neighbors within an epsilon range query of an object.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.preprocessed.preference
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.preference with annotations of type Description
 class DiSHPreferenceVectorIndex<V extends NumberVector<?,?>>
          Preprocessor for DiSH preference vector assignment to objects of a certain database.
 class HiSCPreferenceVectorIndex<V extends NumberVector<?,?>>
          Preprocessor for HiSC preference vector assignment to objects of a certain database.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.preprocessed.snn
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.snn with annotations of type Description
 class SharedNearestNeighborPreprocessor<O,D extends Distance<D>>
          A preprocessor for annotation of the ids of nearest neighbors to each database object.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with annotations of type Description
 class AbstractSubspaceProjectionIndex<NV extends NumberVector<?,?>,D extends Distance<D>,P extends ProjectionResult>
          Abstract base class for a local PCA based index.
 class FourCSubspaceIndex<V extends NumberVector<V,?>,D extends Distance<D>>
          Preprocessor for 4C local dimensionality and locally weighted matrix assignment to objects of a certain database.
 class PreDeConSubspaceIndex<V extends NumberVector<? extends V,?>,D extends Distance<D>>
          Preprocessor for PreDeCon local dimensionality and locally weighted matrix assignment to objects of a certain database.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with annotations of type Description
 class MTree<O,D extends Distance<D>>
          MTree is a metrical index structure based on the concepts of the M-Tree.
 

Uses of Description in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with annotations of type Description
 class RStarTree
          RStarTree is a spatial index structure based on the concepts of the R*-Tree.
 

Uses of Description in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with annotations of type Description
 class FirstNEigenPairFilter
          The FirstNEigenPairFilter marks the n highest eigenpairs as strong eigenpairs, where n is a user specified number.
 class LimitEigenPairFilter
          The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue below the specified threshold (relative or absolute) as weak eigenpairs, the others are marked as strong eigenpairs.
 class NormalizingEigenPairFilter
          The NormalizingEigenPairFilter normalizes all eigenvectors s.t.
 class PercentageEigenPairFilter
          The PercentageEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs.
 class ProgressiveEigenPairFilter
          The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs.
 class RelativeEigenPairFilter
          The RelativeEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs who are a certain factor above the average of the remaining eigenvalues.
 class SignificantEigenPairFilter
          The SignificantEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and chooses the contrast of an Eigenvalue to the remaining Eigenvalues is maximal.
 class WeakEigenPairFilter
          The WeakEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and returns the first eigenpairs who are above the average mark as "strong", the others as "weak".
 class WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
          CovarianceMatrixBuilder with weights.
 


Release 0.4.0 (2011-09-20_1324)