| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the  KDDTaskmain routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | Generalized DBSCAN. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected clustering algorithms or
 subspace clustering algorithms according to the classical but somewhat obsolete classification schema
 of clustering algorithms for axis-parallel subspaces. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | Subspace outlier detection methods. | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | Greedy ensembles for outlier detection. | 
| de.lmu.ifi.dbs.elki.application.internal | Internal utilities for development. | 
| de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. | 
| de.lmu.ifi.dbs.elki.database.ids.integer | Integer-based DBID implementation --
 do not use directly - always use  DBIDUtil. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | Distance functions designed for time series. | 
| de.lmu.ifi.dbs.elki.evaluation.clustering | Evaluation of clustering results. | 
| de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments | Pair-segment analysis of multiple clusterings. | 
| de.lmu.ifi.dbs.elki.evaluation.outlier | Evaluate an outlier score using a misclassification based cost model. | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | Queries on the R-Tree family of indexes: kNN and range queries. | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.bulk | Packages for bulk-loading R*-Trees. | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.insert | Insertion strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.overflow | Overflow treatment strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.reinsert | Reinsertion strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split | Splitting strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.vafile | Vector Approximation File | 
| de.lmu.ifi.dbs.elki.math | Mathematical operations and utilities used throughout the framework. | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | Functions to compute the similarity of dimensions (or the interestingness of the combination). | 
| de.lmu.ifi.dbs.elki.math.geometry | Algorithms from computational geometry. | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. | 
| de.lmu.ifi.dbs.elki.math.spacefillingcurves | Space filling curves. | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution | Standard distributions, with random generation functionalities. | 
| de.lmu.ifi.dbs.elki.result | Result types, representation and handling | 
| de.lmu.ifi.dbs.elki.utilities.datastructures.arrays | Utilities for arrays: advanced sorting for primitvie arrays. | 
| de.lmu.ifi.dbs.elki.utilities.documentation | Documentation utilities: Annotations for Title, Description, Reference | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments | Visualizers for inspecting cluster differences using pair counting segments. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.density | Visualizers for data set density in a scatterplot projection. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier | Visualizers for outlier scores based on 2D projections. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | APRIORIProvides the APRIORI algorithm for Mining Association Rules. | 
| class  | DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
 Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DBSCAN<O,D extends Distance<D>>DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. | 
| class  | DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. | 
| class  | EM<V extends NumberVector<?>>Provides the EM algorithm (clustering by expectation maximization). | 
| class  | NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>Mean-shift based clustering algorithm. | 
| class  | OPTICS<O,D extends Distance<D>>OPTICS provides the OPTICS algorithm. | 
| class  | SLINK<O,D extends Distance<D>>Implementation of the efficient Single-Link Algorithm SLINK of R. | 
| class  | SNNClustering<O>
 Shared nearest neighbor clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CASH<V extends NumberVector<?>>Provides the CASH algorithm, an subspace clustering algorithm based on the
 Hough transform. | 
| class  | COPAC<V extends NumberVector<?>,D extends Distance<D>>Provides the COPAC algorithm, an algorithm to partition a database according
 to the correlation dimension of its objects and to then perform an arbitrary
 clustering algorithm over the partitions. | 
| class  | ERiC<V extends NumberVector<?>>Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. | 
| class  | FourC<V extends NumberVector<?>>4C identifies local subgroups of data objects sharing a uniform correlation. | 
| class  | HiCO<V extends NumberVector<?>>Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
 of correlation clusters. | 
| class  | LMCLUSLinear manifold clustering in high dimensional spaces by stochastic search. | 
| class  | ORCLUS<V extends NumberVector<?>>ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
 dimensional spaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | EpsilonNeighborPredicate<O,D extends Distance<D>>The default DBSCAN and OPTICS neighbor predicate, using an
 epsilon-neighborhood. | 
| class  | GeneralizedDBSCANGeneralized DBSCAN, density-based clustering with noise. | 
| class  | MinPtsCorePredicateThe DBSCAN default core point predicate -- having at least  MinPtsCorePredicate.minptsneighbors. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using Lloyd-style bulk iterations. | 
| class  | KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using MacQueen style incremental updates. | 
| class  | KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>K-Means++ initialization for k-means. | 
| class  | KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-medians clustering algorithm, using Lloyd-style bulk
 iterations. | 
| class  | KMedoidsPAM<V,D extends NumberDistance<D,?>>Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach. | 
| class  | PAMInitialMeans<V,D extends NumberDistance<D,?>>PAM initialization for k-means (and of course, PAM). | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CLIQUE<V extends NumberVector<?>>
 Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. | 
| class  | DiSH<V extends NumberVector<?>>
 Algorithm for detecting subspace hierarchies. | 
| class  | HiSC<V extends NumberVector<?>>Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
 of subspace clusters. | 
| class  | PreDeCon<V extends NumberVector<?>>
 PreDeCon computes clusters of subspace preference weighted connected points. | 
| class  | PROCLUS<V extends NumberVector<?>>
 Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
 high dimensional spaces. | 
| class  | SUBCLU<V extends NumberVector<?>>
 Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ABOD<V extends NumberVector<?>>Angle-Based Outlier Detection
 
 Outlier detection using variance analysis on angles, especially for high
 dimensional data sets. | 
| class  | AbstractAggarwalYuOutlier<V extends NumberVector<?>>Abstract base class for the sparse-grid-cell based outlier detection of
 Aggarwal and Yu. | 
| class  | AggarwalYuEvolutionary<V extends NumberVector<?>>EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
 detect outliers for high dimensional data. | 
| class  | AggarwalYuNaive<V extends NumberVector<?>>BruteForce provides a naive brute force algorithm in which all k-subsets of
 dimensions are examined and calculates the sparsity coefficient to find
 outliers. | 
| class  | ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "approximate Local Correlation Integral". | 
| class  | COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
 Subspaces
 
 
 Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. | 
| class  | DBOutlierDetection<O,D extends Distance<D>>Simple distanced based outlier detection algorithm. | 
| class  | DBOutlierScore<O,D extends Distance<D>>Compute percentage of neighbors in the given neighborhood with size d. | 
| class  | GaussianUniformMixture<V extends NumberVector<?>>Outlier detection algorithm using a mixture model approach. | 
| class  | HilOut<O extends NumberVector<?>>Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. | 
| class  | INFLO<O,D extends NumberDistance<D,?>>INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. | 
| class  | KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. | 
| class  | KNNWeightOutlier<O,D extends NumberDistance<D,?>>Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. | 
| class  | LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>Outlier Detection with Kernel Density Functions. | 
| class  | LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. | 
| class  | LOCI<O,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "Local Correlation Integral". | 
| class  | LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  LOF.K_ID(-lof.k). | 
| class  | LoOP<O,D extends NumberDistance<D,?>>LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. | 
| class  | OPTICSOF<O,D extends NumberDistance<D,?>>OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. | 
| class  | ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. | 
| class  | SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Algorithm to compute local correlation outlier probability. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | FeatureBaggingA simple ensemble method called "Feature bagging" for outlier detection. | 
| class  | HiCS<V extends NumberVector<?>>Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>GLS-Backward Search is a statistical approach to detecting spatial outliers. | 
| class  | CTLuMeanMultipleAttributes<N,O extends NumberVector<?>>Mean Approach is used to discover spatial outliers with multiple attributes. | 
| class  | CTLuMedianAlgorithm<N>Median Algorithm of C. | 
| class  | CTLuMedianMultipleAttributes<N,O extends NumberVector<?>>Median Approach is used to discover spatial outliers with multiple
 attributes. | 
| class  | CTLuMoranScatterplotOutlier<N>Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. | 
| class  | CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>Spatial outlier detection based on random walks. | 
| class  | CTLuScatterplotOutlier<N>Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. | 
| class  | CTLuZTestOutlier<N>Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. | 
| class  | SLOM<N,O,D extends NumberDistance<D,?>>SLOM: a new measure for local spatial outliers
 
 
 Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. | 
| class  | SOF<N,O,D extends NumberDistance<D,?>>The Spatial Outlier Factor (SOF) is a spatial
  LOFvariation. | 
| class  | TrimmedMeanApproach<N>A Trimmed Mean Approach to Finding Spatial Outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OutRankS1OutRank: ranking outliers in high dimensional data. | 
| class  | OUTRES<V extends NumberVector<?>>Adaptive outlierness for subspace outlier ranking (OUTRES). | 
| class  | SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>Subspace Outlier Degree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ComputeKNNOutlierScores<O,D extends NumberDistance<D,?>>Application that runs a series of kNN-based algorithms on a data set, for
 building an ensemble in a second step. | 
| class  | GreedyEnsembleExperimentClass to load an outlier detection summary file, as produced by
  ComputeKNNOutlierScores, and compute a naive ensemble for it. | 
| class  | VisualizePairwiseGainMatrixClass to load an outlier detection summary file, as produced by
  ComputeKNNOutlierScores, and compute a matrix with the pairwise
 gains. | 
| Modifier and Type | Method and Description | 
|---|---|
| private static List<Pair<Reference,List<Class<?>>>> | DocumentReferences. sortedReferences() | 
| Modifier and Type | Method and Description | 
|---|---|
| private static Document | DocumentReferences. documentReferences(List<Pair<Reference,List<Class<?>>>> refs) | 
| private static void | DocumentReferences. documentReferencesWiki(List<Pair<Reference,List<Class<?>>>> refs,
                      PrintStream refstreamW) | 
| private static void | DocumentReferences. inspectClass(Class<?> cls,
            List<Pair<Reference,List<Class<?>>>> refs,
            Map<Reference,List<Class<?>>> map) | 
| private static void | DocumentReferences. inspectClass(Class<?> cls,
            List<Pair<Reference,List<Class<?>>>> refs,
            Map<Reference,List<Class<?>>> map) | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KNNExplorer<O extends NumberVector<?>,D extends NumberDistance<D,?>>User application to explore the k Nearest Neighbors for a given data set and
 distance function. | 
| Modifier and Type | Class and Description | 
|---|---|
| (package private) class  | IntegerDBIDArrayQuickSortClass to sort an integer DBID array, using a modified quicksort. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CanberraDistanceFunctionCanberra distance function, a variation of Manhattan distance. | 
| class  | JeffreyDivergenceDistanceFunctionProvides the Jeffrey Divergence Distance for FeatureVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HistogramIntersectionDistanceFunctionIntersection distance for color histograms. | 
| class  | HSBHistogramQuadraticDistanceFunctionDistance function for HSB color histograms based on a quadratic form and
 color similarity. | 
| class  | RGBHistogramQuadraticDistanceFunctionDistance function for RGB color histograms based on a quadratic form and
 color similarity. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DTWDistanceFunctionProvides the Dynamic Time Warping distance for FeatureVectors. | 
| class  | EDRDistanceFunctionProvides the Edit Distance on Real Sequence distance for FeatureVectors. | 
| class  | ERPDistanceFunctionProvides the Edit Distance With Real Penalty distance for FeatureVectors. | 
| class  | LCSSDistanceFunctionProvides the Longest Common Subsequence distance for FeatureVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BCubedBCubed measures. | 
| class  | EditDistanceEdit distance measures
 
 
 Pantel, P. and Lin, D. | 
| class  | EntropyEntropy based measures
 
 References:
 
 Meilă, M. | 
| class  | SetMatchingPuritySet matching purity measures
 
 References:
 
 Zhao, Y. and Karypis, G. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | SetMatchingPurity. f1Measure()Get the set matching F1-Measure
 
 
 Steinbach, M. and Karypis, G. and Kumar, V. and others A comparison of document clustering techniques KDD workshop on text mining, 2000 | 
| double | PairCounting. fowlkesMallows()Computes the pair-counting Fowlkes-mallows (flat only, non-hierarchical!) | 
| double | Entropy. normalizedVariationOfInformation()Get the normalized variation of information (normalized, 0 = equal)
 NVI = 1 - NMI_Joint
 
 
 Vinh, N.X. and Epps, J. and Bailey, J. | 
| double | SetMatchingPurity. purity()Get the set matchings purity (first:second clustering) (normalized, 1 =
 equal) | 
| double | PairCounting. randIndex()Computes the Rand index (RI). | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SegmentsCreates segments of two or more clusterings. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OutlierSmROCCurveSmooth ROC curves are a variation of classic ROC curves that takes the scores
 into account. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MTree<O,D extends Distance<D>>MTree is a metrical index structure based on the concepts of the M-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DoubleDistanceRStarTreeKNNQuery<O extends SpatialComparable>Instance of a KNN query for a particular spatial index. | 
| class  | DoubleDistanceRStarTreeRangeQuery<O extends SpatialComparable>Instance of a range query for a particular spatial index. | 
| class  | GenericRStarTreeKNNQuery<O extends SpatialComparable,D extends Distance<D>>Instance of a KNN query for a particular spatial index. | 
| class  | GenericRStarTreeRangeQuery<O extends SpatialComparable,D extends Distance<D>>Instance of a range query for a particular spatial index. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | RStarTreeRStarTree is a spatial index structure based on the concepts of the R*-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OneDimSortBulkSplitSimple bulk loading strategy by sorting the data along the first dimension. | 
| class  | SortTileRecursiveBulkSplitSort-Tile-Recursive aims at tiling the data space with a grid-like structure
 for partitioning the dataset into the required number of buckets. | 
| class  | SpatialSortBulkSplitBulk loading by spatially sorting the objects, then partitioning the sorted
 list appropriately. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ApproximativeLeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree with slightly better
 performance for large leaf sizes (linear approximation). | 
| class  | CombinedInsertionStrategyUse two different insertion strategies for directory and leaf nodes. | 
| class  | LeastEnlargementInsertionStrategyThe default R-Tree insertion strategy: find rectangle with least volume
 enlargement. | 
| class  | LeastEnlargementWithAreaInsertionStrategyA slight modification of the default R-Tree insertion strategy: find
 rectangle with least volume enlargement, but choose least area on ties. | 
| class  | LeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree for leaf nodes. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | LimitedReinsertOverflowTreatmentLimited reinsertions, as proposed by the R*-Tree: For each real insert, allow
 reinsertions to happen only once per level. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CloseReinsertReinsert objects on page overflow, starting with close objects first (even
 when they will likely be inserted into the same page again!) | 
| class  | FarReinsertReinsert objects on page overflow, starting with farther objects first (even
 when they will likely be inserted into the same page again!) | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AngTanLinearSplitLine-time complexity split proposed by Ang and Tan. | 
| class  | GreeneSplitQuadratic-time complexity split as used by Diane Greene for the R-Tree. | 
| class  | RTreeLinearSplitLinear-time complexity greedy split as used by the original R-Tree. | 
| class  | RTreeQuadraticSplitQuadratic-time complexity greedy split as used by the original R-Tree. | 
| class  | TopologicalSplitterEncapsulates the required parameters for a topological split of a R*-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DAFileDimension approximation file, a one-dimensional part of the
  PartialVAFile. | 
| class  | PartialVAFile<V extends NumberVector<?>>PartialVAFile. | 
| class  | VAFile<V extends NumberVector<?>>Vector-approximation file (VAFile)
 
 Reference:
 
 Weber, R. and Blott, S. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | GeoUtilClass with utility functions for geographic computations. | 
| class  | MeanCompute the mean using a numerically stable online algorithm. | 
| class  | MeanVarianceDo some simple statistics (mean, variance) using a numerically stable online
 algorithm. | 
| Modifier and Type | Method and Description | 
|---|---|
| static double | GeoUtil. haversineFormulaDeg(double lat1,
                   double lon1,
                   double lat2,
                   double lon2)Compute the approximate on-earth-surface distance of two points using the
 Haversine formula
 
 Complexity: 5 trigonometric functions, 2 sqrt. | 
| static double | GeoUtil. haversineFormulaRad(double lat1,
                   double lon1,
                   double lat2,
                   double lon2)Compute the approximate on-earth-surface distance of two points using the
 Haversine formula
 
 Complexity: 5 trigonometric functions, 2 sqrt. | 
| static double | GeoUtil. sphericalVincentyFormulaDeg(double lat1,
                           double lon1,
                           double lat2,
                           double lon2)Compute the approximate on-earth-surface distance of two points. | 
| static double | GeoUtil. sphericalVincentyFormulaRad(double lat1,
                           double lon1,
                           double lat2,
                           double lon2)Compute the approximate on-earth-surface distance of two points. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HSMDimensionSimilarityFIXME: This needs serious TESTING before release. | 
| class  | MCEDimensionSimilarityCompute dimension similarity by using a nested means discretization. | 
| class  | SURFINGDimensionSimilarityCompute the similarity of dimensions using the SURFING score. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | GrahamScanConvexHull2DClasses to compute the convex hull of a set of points in 2D, using the
 classic Grahams scan. | 
| class  | PrimsMinimumSpanningTreePrim's algorithm for finding the minimum spanning tree. | 
| class  | SweepHullDelaunay2DCompute the Convex Hull and/or Delaunay Triangulation, using the sweep-hull
 approach of David Sinclair. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | PCAFilteredAutotuningRunner<V extends NumberVector<?>>Performs a self-tuning local PCA based on the covariance matrices of given
 objects. | 
| class  | RANSACCovarianceMatrixBuilder<V extends NumberVector<?>>RANSAC based approach to a more robust covariance matrix computation. | 
| class  | WeightedCovarianceMatrixBuilder<V extends NumberVector<?>>CovarianceMatrixBuilderwith weights. | 
| Modifier and Type | Method and Description | 
|---|---|
| Matrix | RANSACCovarianceMatrixBuilder. processIds(DBIDs ids,
          Relation<? extends V> relation) | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BinarySplitSpatialSorterSpatially sort the data set by repetitive binary splitting, circulating
 through the dimensions. | 
| class  | HilbertSpatialSorterSort object along the Hilbert Space Filling curve by mapping them to their
 Hilbert numbers and sorting them. | 
| class  | PeanoSpatialSorterBulk-load an R-tree index by presorting the objects with their position on
 the Peano curve. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HaltonUniformDistributionHalton sequences are a pseudo-uniform distribution. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected static double | GammaDistribution. chisquaredProbitApproximation(double p,
                             double nu,
                             double g)Approximate probit for chi squared distribution
 
 Based on first half of algorithm AS 91
 
 Reference:
 
 Algorithm AS 91: The percentage points of the $\chi$ 2 distribution D.J. | 
| private static double | PoissonDistribution. devianceTerm(double x,
            double np)Evaluate the deviance term of the saddle point approximation. | 
| static double | GammaDistribution. digamma(double x)Compute the Psi / Digamma function
 
 Reference:
 
 J. | 
| static GammaDistribution | GammaDistribution. estimate(double[] data,
        int len)Mean least squares estimation of Gamma distribution to a set of
 observations. | 
| double | PoissonDistribution. pdf(double x) | 
| double | PoissonDistribution. pmf(int x)Poisson PMF for integer values. | 
| static double | ChiSquaredDistribution. quantile(double x,
        double dof)Return the quantile function for this distribution
 
 Reference:
 
 Algorithm AS 91: The percentage points of the $\chi$^2 distribution D.J. | 
| static double | GammaDistribution. quantile(double p,
        double k,
        double theta)Compute probit (inverse cdf) for Gamma distributions. | 
| private static double | PoissonDistribution. stirlingError(double n)Calculates the Striling Error
 
 stirlerr(n) = ln(n!) | 
| private static double | PoissonDistribution. stirlingError(int n)Calculates the Striling Error
 
 stirlerr(n) = ln(n!) | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KMLOutputHandlerClass to handle KML output. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | IntegerArrayQuickSortClass to sort an int array, using a modified quicksort. | 
| Modifier and Type | Method and Description | 
|---|---|
| static Reference | DocumentationUtil. getReference(Class<?> c)Get the reference annotation of a class, or  null. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HeDESNormalizationOutlierScalingNormalization used by HeDES | 
| class  | MinusLogGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1],
 by assuming a Gamma distribution on the data and evaluating the Gamma CDF. | 
| class  | MinusLogStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| class  | MixtureModelOutlierScalingFunctionTries to fit a mixture model (exponential for inliers and gaussian for
 outliers) to the outlier score distribution. | 
| class  | MultiplicativeInverseScalingScaling function to invert values basically by computing 1/x, but in a variation
 that maps the values to the [0:1] interval and avoiding division by 0. | 
| class  | OutlierGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1]
 by assuming a Gamma distribution on the values. | 
| class  | OutlierMinusLogScalingScaling function to invert values by computing -1 * Math.log(x)
 
 Useful for example for scaling
  ABOD, but seeMinusLogStandardDeviationScalingandMinusLogGammaScalingfor
 more advanced scalings for this algorithm. | 
| class  | SigmoidOutlierScalingFunctionTries to fit a sigmoid to the outlier scores and use it to convert the values
 to probability estimates in the range of 0.0 to 1.0 | 
| class  | SqrtStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| class  | StandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CircleSegmentsVisualizerVisualizer to draw circle segments of clusterings and enable interactive
 selection of segments. | 
| Modifier and Type | Method and Description | 
|---|---|
| private double[] | DensityEstimationOverlay.Instance. initializeBandwidth(double[][] data) | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BubbleVisualizationGenerates a SVG-Element containing bubbles. | 
| class  | COPVectorVisualizationVisualize error vectors as produced by COP. |