| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the  KDDTaskmain routine. | 
| de.lmu.ifi.dbs.elki.algorithm.benchmark | Benchmarking pseudo algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | Generalized DBSCAN. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected clustering algorithms or
 subspace clustering algorithms according to the classical but somewhat obsolete classification schema
 of clustering algorithms for axis-parallel subspaces. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings
 
 These methods are mostly useful for providing a reference result in evaluation. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | Subspace outlier detection methods. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | Trivial outlier detection algorithms: no outliers, all outliers, label outliers. | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) | 
| tutorial.clustering | Classes from the tutorial on implementing a custom k-means variation. | 
| tutorial.outlier | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>Provides an abstract algorithm already setting the distance function. | 
| class  | AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<?>,R extends Result>Provides an abstract algorithm already setting the distance function. | 
| class  | APRIORIProvides the APRIORI algorithm for Mining Association Rules. | 
| class  | DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
 Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. | 
| class  | DummyAlgorithm<O extends NumberVector<?>>Dummy algorithm, which just iterates over all points once, doing a 10NN query
 each. | 
| class  | KNNDistanceOrder<O,D extends Distance<D>>Provides an order of the kNN-distances for all objects within the database. | 
| class  | KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>Joins in a given spatial database to each object its k-nearest neighbors. | 
| class  | MaterializeDistances<O,D extends NumberDistance<D,?>>Algorithm to materialize all the distances in a data set. | 
| class  | NullAlgorithmNull Algorithm, which does nothing. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KNNBenchmarkAlgorithm<O,D extends Distance<D>>Benchmarking algorithm that computes the k nearest neighbors for each query
 point. | 
| class  | RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>Benchmarking algorithm that computes a range query for each point. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>> | 
| class  | AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>>Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. | 
| class  | DBSCAN<O,D extends Distance<D>>DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. | 
| class  | DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. | 
| class  | EM<V extends NumberVector<?>>Provides the EM algorithm (clustering by expectation maximization). | 
| class  | NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>Mean-shift based clustering algorithm. | 
| class  | OPTICS<O,D extends Distance<D>>OPTICS provides the OPTICS algorithm. | 
| class  | OPTICSXi<N extends NumberDistance<N,?>>Class to handle OPTICS Xi extraction. | 
| class  | SLINK<O,D extends Distance<D>>Implementation of the efficient Single-Link Algorithm SLINK of R. | 
| class  | SNNClustering<O>
 Shared nearest neighbor clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CASH<V extends NumberVector<?>>Provides the CASH algorithm, an subspace clustering algorithm based on the
 Hough transform. | 
| class  | COPAC<V extends NumberVector<?>,D extends Distance<D>>Provides the COPAC algorithm, an algorithm to partition a database according
 to the correlation dimension of its objects and to then perform an arbitrary
 clustering algorithm over the partitions. | 
| class  | ERiC<V extends NumberVector<?>>Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. | 
| class  | FourC<V extends NumberVector<?>>4C identifies local subgroups of data objects sharing a uniform correlation. | 
| class  | HiCO<V extends NumberVector<?>>Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
 of correlation clusters. | 
| class  | LMCLUSLinear manifold clustering in high dimensional spaces by stochastic search. | 
| class  | ORCLUS<V extends NumberVector<?>>ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
 dimensional spaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | GeneralizedDBSCANGeneralized DBSCAN, density-based clustering with noise. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>Abstract base class for k-means implementations. | 
| class  | KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using Lloyd-style bulk iterations. | 
| class  | KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using MacQueen style incremental updates. | 
| class  | KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-medians clustering algorithm, using Lloyd-style bulk
 iterations. | 
| class  | KMedoidsEM<V,D extends NumberDistance<D,?>>Provides the k-medoids clustering algorithm, using a "bulk" variation of the
 "Partitioning Around Medoids" approach. | 
| class  | KMedoidsPAM<V,D extends NumberDistance<D,?>>Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CLIQUE<V extends NumberVector<?>>
 Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. | 
| class  | DiSH<V extends NumberVector<?>>
 Algorithm for detecting subspace hierarchies. | 
| class  | HiSC<V extends NumberVector<?>>Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
 of subspace clusters. | 
| class  | PreDeCon<V extends NumberVector<?>>
 PreDeCon computes clusters of subspace preference weighted connected points. | 
| class  | PROCLUS<V extends NumberVector<?>>
 Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
 high dimensional spaces. | 
| class  | SUBCLU<V extends NumberVector<?>>
 Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelClusteringPseudo clustering using labels. | 
| class  | ByLabelHierarchicalClusteringPseudo clustering using labels. | 
| class  | ByLabelOrAllInOneClusteringTrivial class that will try to cluster by label, and fall back to an
 "all-in-one" clustering. | 
| class  | ByModelClusteringPseudo clustering using annotated models. | 
| class  | TrivialAllInOneTrivial pseudo-clustering that just considers all points to be one big
 cluster. | 
| class  | TrivialAllNoiseTrivial pseudo-clustering that just considers all points to be noise. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ABOD<V extends NumberVector<?>>Angle-Based Outlier Detection
 
 Outlier detection using variance analysis on angles, especially for high
 dimensional data sets. | 
| class  | AbstractAggarwalYuOutlier<V extends NumberVector<?>>Abstract base class for the sparse-grid-cell based outlier detection of
 Aggarwal and Yu. | 
| class  | AbstractDBOutlier<O,D extends Distance<D>>Simple distance based outlier detection algorithms. | 
| class  | AggarwalYuEvolutionary<V extends NumberVector<?>>EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
 detect outliers for high dimensional data. | 
| class  | AggarwalYuNaive<V extends NumberVector<?>>BruteForce provides a naive brute force algorithm in which all k-subsets of
 dimensions are examined and calculates the sparsity coefficient to find
 outliers. | 
| class  | ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "approximate Local Correlation Integral". | 
| class  | COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
 Subspaces
 
 
 Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. | 
| class  | DBOutlierDetection<O,D extends Distance<D>>Simple distanced based outlier detection algorithm. | 
| class  | DBOutlierScore<O,D extends Distance<D>>Compute percentage of neighbors in the given neighborhood with size d. | 
| class  | EMOutlier<V extends NumberVector<?>>outlier detection algorithm using EM Clustering. | 
| class  | GaussianModel<V extends NumberVector<?>>Outlier have smallest GMOD_PROB: the outlier scores is the
 probability density of the assumed distribution. | 
| class  | GaussianUniformMixture<V extends NumberVector<?>>Outlier detection algorithm using a mixture model approach. | 
| class  | HilOut<O extends NumberVector<?>>Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. | 
| class  | INFLO<O,D extends NumberDistance<D,?>>INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. | 
| class  | KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. | 
| class  | KNNWeightOutlier<O,D extends NumberDistance<D,?>>Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. | 
| class  | LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>Outlier Detection with Kernel Density Functions. | 
| class  | LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. | 
| class  | LOCI<O,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "Local Correlation Integral". | 
| class  | LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  LOF.K_ID(-lof.k). | 
| class  | LoOP<O,D extends NumberDistance<D,?>>LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. | 
| class  | OnlineLOF<O,D extends NumberDistance<D,?>>Incremental version of the  LOFAlgorithm, supports insertions and
 removals. | 
| class  | OPTICSOF<O,D extends NumberDistance<D,?>>OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. | 
| class  | ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. | 
| class  | SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Algorithm to compute local correlation outlier probability. | 
| class  | SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>A simple variant of the LOF algorithm, which uses a simple kernel density
 estimation instead of the local reachability density. | 
| class  | SimpleLOF<O,D extends NumberDistance<D,?>>A simplified version of the original LOF algorithm, which does not use the
 reachability distance, yielding less stable results on inliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ExternalDoubleOutlierScoreExternal outlier detection scores, loading outlier scores from an external
 file. | 
| class  | FeatureBaggingA simple ensemble method called "Feature bagging" for outlier detection. | 
| class  | HiCS<V extends NumberVector<?>>Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. | 
| class  | RescaleMetaOutlierAlgorithmScale another outlier score using the given scaling function. | 
| class  | SimpleOutlierEnsembleSimple outlier ensemble method. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>Abstract base class for distance-based spatial outlier detection methods. | 
| class  | AbstractNeighborhoodOutlier<O>Abstract base class for spatial outlier detection methods using a spatial
 neighborhood. | 
| class  | CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>GLS-Backward Search is a statistical approach to detecting spatial outliers. | 
| class  | CTLuMeanMultipleAttributes<N,O extends NumberVector<?>>Mean Approach is used to discover spatial outliers with multiple attributes. | 
| class  | CTLuMedianAlgorithm<N>Median Algorithm of C. | 
| class  | CTLuMedianMultipleAttributes<N,O extends NumberVector<?>>Median Approach is used to discover spatial outliers with multiple
 attributes. | 
| class  | CTLuMoranScatterplotOutlier<N>Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. | 
| class  | CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>Spatial outlier detection based on random walks. | 
| class  | CTLuScatterplotOutlier<N>Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. | 
| class  | CTLuZTestOutlier<N>Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. | 
| class  | SLOM<N,O,D extends NumberDistance<D,?>>SLOM: a new measure for local spatial outliers
 
 
 Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. | 
| class  | SOF<N,O,D extends NumberDistance<D,?>>The Spatial Outlier Factor (SOF) is a spatial
  LOFvariation. | 
| class  | TrimmedMeanApproach<N>A Trimmed Mean Approach to Finding Spatial Outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OutRankS1OutRank: ranking outliers in high dimensional data. | 
| class  | OUTRES<V extends NumberVector<?>>Adaptive outlierness for subspace outlier ranking (OUTRES). | 
| class  | SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>Subspace Outlier Degree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelOutlierTrivial algorithm that marks outliers by their label. | 
| class  | TrivialAllOutlierTrivial method that claims all objects to be outliers. | 
| class  | TrivialGeneratedOutlierExtract outlier score from the model the objects were generated by. | 
| class  | TrivialNoOutlierTrivial method that claims to find no outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AveragePrecisionAtK<V,D extends NumberDistance<D,?>>Evaluate a distance functions performance by computing the average precision
 at k, when ranking the objects by distance. | 
| class  | DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>Algorithm to gather statistics over the distance distribution in the data
 set. | 
| class  | EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| class  | RankingQualityHistogram<O,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SameSizeKMeansAlgorithm<V extends NumberVector<?>>K-means variation that produces equally sized clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DistanceStddevOutlier<O,D extends NumberDistance<D,?>>A simple outlier detection algorithm that computes the standard deviation of
 the kNN distances. |