ELKI command line parameter overview:

-abod.k <int>

Parameter k for kNN queries.

Default: 30

Parameter for:

-abod.kernelfunction <class|object>

Kernel function to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.PrimitiveSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.PolynomialKernelFunction

Known implementations:

Parameter for:

-abod.samplesize <int>

Sample size to enable fast mode.

Parameter for:

-adapter.similarityfunction <class|object>

Similarity function to derive the distance between database objects from.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.NormalizedSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.FractionalSharedNearestNeighborSimilarityFunction

Known implementations:

Parameter for:

-algorithm <object_1|class_1,...,object_n|class_n>

Algorithm to run.

Parameter for:

-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-app.out <file>

the file to write the generated data set into, if the file already exists, the generated points will be appended to this file.

Parameter for:

-apriori.minfreq <double>

Threshold for minimum frequency as percentage value (alternatively to parameter apriori.minsupp).

Parameter for:

-apriori.minsupp <int>

Threshold for minimum support as minimally required number of transactions (alternatively to parameter apriori.minfreq - setting apriori.minsupp is slightly preferable over setting apriori.minfreq in terms of efficiency).

Parameter for:

-arff.classlabel <pattern>

Pattern to recognize class label attributes.

Default: (Class|Class-?Label)

Parameter for:

-arff.externalid <pattern>

Pattern to recognize external ID attributes.

Default: (ID|External-?ID)

Parameter for:

-axisref.scale <double>

Scale the data space extension by the given factor.

Default: 1.0

Parameter for:

-ay.k <int>

Subspace dimensionality to search for.

Parameter for:

-ay.m <int>

Population size for evolutionary algorithm.

Parameter for:

-ay.phi <int>

The number of equi-depth grid ranges to use in each dimension.

Parameter for:

-ay.seed <long>

The random number generator seed.

Parameter for:

-bubble.fill <|true|false>

Half-transparent filling of bubbles.

Default: false

Parameter for:

-bubble.scaling <class|object>

Additional scaling function for bubbles.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierScalingFunction

Known implementations:

Parameter for:

-bylabelclustering.multiple <|true|false>

Flag to indicate that only subspaces with large coverage (i.e. the fraction of the database that is covered by the dense units) are selected, the rest will be pruned.

Default: false

Parameter for:

-bylabelclustering.noise <pattern>

Pattern to recognize noise classes by their label.

Parameter for:

-bymodel.randomseed <int>

The random generator seed.

Parameter for:

-bymodel.sizescale <double>

Factor for scaling the specified cluster sizes.

Default: 1.0

Parameter for:

-bymodel.spec <file>

The generator specification file.

Parameter for:

-cash.adjust <|true|false>

Flag to indicate that an adjustment of the applied heuristic for choosing an interval is performed after an interval is selected.

Default: false

Parameter for:

-cash.jitter <double>

The maximum jitter for distance values.

Parameter for:

-cash.maxlevel <int>

The maximum level for splitting the hypercube.

Parameter for:

-cash.mindim <int>

The minimum dimensionality of the subspaces to be found.

Default: 1

Parameter for:

-cash.minpts <int>

Threshold for minimum number of points in a cluster.

Parameter for:

-clipscale.max <double>

Maximum value to allow.

Parameter for:

-clipscale.min <double>

Minimum value to allow.

Parameter for:

-clique.prune <|true|false>

Flag to indicate that only subspaces with large coverage (i.e. the fraction of the database that is covered by the dense units) are selected, the rest will be pruned.

Default: false

Parameter for:

-clique.tau <double>

The density threshold for the selectivity of a unit, where the selectivity isthe fraction of total feature vectors contained in this unit.

Parameter for:

-clique.xsi <int>

The number of intervals (units) in each dimension.

Parameter for:

-colorhist.generator <class|object>

Class that is used to generate a color histogram.

Class Restriction: implements de.lmu.ifi.dbs.elki.data.images.ComputeColorHistogram

Default: de.lmu.ifi.dbs.elki.data.images.ComputeNaiveRGBColorHistogram

Known implementations:

Parameter for:

-colorhist.in <file>

Input image for color histograms.

Parameter for:

-copac.partitionAlgorithm <class>

Clustering algorithm to apply to each partition.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm

Known implementations:

Parameter for:

-copac.partitionDistance <class|object>

Distance to use for the inner algorithms.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.FilteredLocalPCABasedDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Known implementations:

Parameter for:

-copac.preprocessor <class>

Local PCA Preprocessor to derive partition criterion.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.LocalProjectionIndex$Factory

Known implementations:

Parameter for:

-db <class|object>

Database class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

Parameter for:

-db.index <object_1|class_1,...,object_n|class_n>

Database indexes to add.

Parameter for:

-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

Parameter for:

-dbc.dim <int>

Dimensionality of the vectors to generate.

Parameter for:

-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

Parameter for:

-dbc.genseed <long>

Seed for randomly generating vectors

Parameter for:

-dbc.in <file>

The name of the input file to be parsed.

Parameter for:

-dbc.parser <class|object>

Parser to provide the database.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.Parser

Default: de.lmu.ifi.dbs.elki.datasource.parser.DoubleVectorLabelParser

Known implementations:

Parameter for:

-dbc.size <int>

Database size to generate.

Parameter for:

-dbod.d <distance>

size of the D-neighborhood

Parameter for:

-dbod.p <double>

minimum fraction of objects that must be outside the D-neighborhood of an outlier

Parameter for:

-dbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

Parameter for:

-dbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

Parameter for:

-deliclu.minpts <int>

Threshold for minimum number of points within a cluster.

Parameter for:

-derivator.accuracy <int>

Threshold for output accuracy fraction digits.

Default: 4

Parameter for:

-derivator.randomSample <|true|false>

Flag to use random sample (use knn query around centroid, if flag is not set).

Default: false

Parameter for:

-derivator.sampleSize <int>

Threshold for the size of the random sample to use. Default value is size of the complete dataset.

Parameter for:

-dim <int>

an integer between 1 and the dimensionality of the feature space 1 specifying the dimension to be considered for distance computation.

Parameter for:

-dish.epsilon <double>

The maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector.

Default: 0.0010

Parameter for:

-dish.minpts <int>

Positive threshold for minumum numbers of points in the epsilon-neighborhood of a point. The value of the preference vector in dimension d_i is set to 1 if the epsilon neighborhood contains more than dish.minpts points and the following condition holds: for all dimensions d_j: |neighbors(d_i) intersection neighbors(d_j)| >= dish.minpts.

Parameter for:

-dish.mu <int>

The minimum number of points as a smoothing factor to avoid the single-link-effekt.

Default: 1

Parameter for:

-dish.strategy <APRIORI | MAX_INTERSECTION>

The strategy for determination of the preference vector, available strategies are: [APRIORI| MAX_INTERSECTION](default is MAX_INTERSECTION)

Default: MAX_INTERSECTION

Parameter for:

-distance.dims <int_1,...,int_n>

a comma separated array of integer values, where 1 <= d_i <= the dimensionality of the feature space specifying the dimensions to be considered for distance computation. If this parameter is not set, no dimensions will be considered, i.e. the distance between two objects is always 0.

Parameter for:

-distance.latitudedim <int>

The dimension containing the latitude.

Parameter for:

-distance.longitudedim <int>

The dimension containing the longitude.

Parameter for:

-distance.matrix <file>

The name of the file containing the distance matrix.

Parameter for:

-distance.parser <class|object>

Parser used to load the distance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.DistanceParser

Default: de.lmu.ifi.dbs.elki.datasource.parser.NumberDistanceParser

Known implementations:

Parameter for:

-distancefunction.epsilon <double>

The maximum distance between two vectors with equal preference vectors before considering them as parallel.

Default: 0.0010

Parameter for:

-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.LocalProjectionIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory

Known implementations:

Parameter for:

-diststat.bins <int>

Number of bins to use in the histogram. By default, it is only guaranteed to be within 1*n and 2*n of the given number.

Default: 20

Parameter for:

-diststat.exact <|true|false>

In a first pass, compute the exact minimum and maximum, at the cost of O(2*n*n) instead of O(n*n). The number of resulting bins is guaranteed to be as requested.

Default: false

Parameter for:

-diststat.sampling <|true|false>

Enable sampling of O(n) size to determine the minimum and maximum distances approximately. The resulting number of bins can be larger than the given n.

Default: false

Parameter for:

-edit.bandSize <double>

the band size for Edit Distance alignment (positive double value, 0 <= bandSize <= 1)

Default: 0.1

Parameter for:

-edr.delta <double>

the delta parameter (similarity threshold) for EDR (positive number)

Default: 1.0

Parameter for:

-em.delta <double>

The termination criterion for maximization of E(M): E(M) - E(M') < em.delta

Default: 0.0

Parameter for:

-em.k <int>

The number of clusters to find.

Parameter for:

-em.seed <long>

The random number generator seed.

Parameter for:

-enableDebug <string>

Parameter to enable debugging for particular packages.

Parameter for:

-ericdf.delta <double>

Threshold for approximate linear dependency: the strong eigenvectors of q are approximately linear dependent from the strong eigenvectors p if the following condition holds for all stroneg eigenvectors q_i of q (lambda_q < lambda_p): q_i' * M^check_p * q_i <= delta^2.

Default: 0.1

Parameter for:

-ericdf.tau <double>

Threshold for the maximum distance between two approximately linear dependent subspaces of two objects p and q (lambda_q < lambda_p) before considering them as parallel.

Default: 0.1

Parameter for:

-erp.g <double>

the g parameter ERP (positive number)

Default: 0.0

Parameter for:

-evaluator <object_1|class_1,...,object_n|class_n>

Class to evaluate the results with.

Parameter for:

-explorer.distancefunction <class>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-extendedneighbors.neighborhood <class|object>

The inner neighborhood predicate to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

Parameter for:

-extendedneighbors.steps <int>

The number of steps allowed in the neighborhood graph.

Parameter for:

-externalneighbors.file <file>

The file listing the neighbors.

Parameter for:

-externaloutlier.file <file>

The file name containing the (external) outlier scores.

Parameter for:

-externaloutlier.idpattern <pattern>

The pattern to match object ID prefix

Default: ^ID=

Parameter for:

-externaloutlier.inverted <|true|false>

Flag to signal an inverted outlier score.

Default: false

Parameter for:

-externaloutlier.scaling <class|object>

Class to use as scaling function.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.ScalingFunction

Default: de.lmu.ifi.dbs.elki.utilities.scaling.IdentityScaling

Known implementations:

Parameter for:

-externaloutlier.scorepattern <pattern>

The pattern to match object score prefix

Parameter for:

-fbagging.breadth <|true|false>

Use the breadth first combinations instead of the cumulative sum approach

Default: false

Parameter for:

-fbagging.num <int>

The number of instances to use in the ensemble.

Parameter for:

-fbagging.seed <long>

Specify a particular random seed.

Parameter for:

-fookernel.max_degree <int>

The max degree of theFooKernelFunction. Default: 2

Default: 2

Parameter for:

-gammascale.normalize <|true|false>

Regularize scores before using Gamma scaling.

Default: false

Parameter for:

-gaussod.invert <|true|false>

Invert the value range to [0:1], with 1 being outliers instead of 0.

Default: false

Parameter for:

-generate.n <int>

The number of reference points to be generated.

Parameter for:

-generate.scale <double>

Scale the grid by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

Parameter for:

-glsbs.alpha <double>

Significance niveau

Parameter for:

-glsbs.k <int>

k nearest neighbors to use

Parameter for:

-grid.scale <double>

Scale the grid by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

Parameter for:

-grid.size <int>

The number of partitions in each dimension. Points will be placed on the edges of the grid, except for a grid size of 0, where only the mean is generated as reference point.

Default: 1

Parameter for:

-hico.alpha <double>

The threshold for 'strong' eigenvectors: the 'strong' eigenvectors explain a portion of at least alpha of the total variance.

Default: 0.85

Parameter for:

-hico.delta <double>

Threshold of a distance between a vector q and a given space that indicates that q adds a new dimension to the space.

Default: 0.25

Parameter for:

-hico.k <int>

Optional parameter to specify the number of nearest neighbors considered in the PCA. If this parameter is not set, k is set to the value of parameter mu.

Parameter for:

-hico.mu <int>

Specifies the smoothing factor. The mu-nearest neighbor is used to compute the correlation reachability of an object.

Parameter for:

-hisc.alpha <double>

The maximum absolute variance along a coordinate axis.

Default: 0.01

Parameter for:

-hisc.k <int>

The number of nearest neighbors considered to determine the preference vector. If this value is not defined, k ist set to three times of the dimensionality of the database objects.

Parameter for:

-hsbhist.bpp <int_1,...,int_n>

Bins per plane for HSV/HSB histogram. This will result in bpp ** 3 bins.

Parameter for:

-index.fill <|true|false>

Partially transparent filling of index pages.

Default: false

Parameter for:

-inflo.k <int>

The number of nearest neighbors of an object to be considered for computing its INFLO_SCORE.

Parameter for:

-inflo.m <double>

The threshold

Default: 1.0

Parameter for:

-join.sources <object_1|class_1,...,object_n|class_n>

The data sources to join.

Parameter for:

-json.port <int>

Port for the JSON web server to listen on.

Default: 8080

Parameter for:

-kernel.degree <double>

The degree of the polynomial kernel function. Default: 2.0

Default: 2.0

Parameter for:

-kmeans.k <int>

The number of clusters to find.

Parameter for:

-kmeans.maxiter <int>

The maximum number of iterations to do. 0 means no limit.

Default: 0

Parameter for:

-kmeans.seed <long>

The random number generator seed.

Parameter for:

-kml.autoopen <|true|false>

Automatically open the result file.

Default: false

Parameter for:

-kml.compat <|true|false>

Use simpler KML objects, compatibility mode.

Default: false

Parameter for:

-kml.scaling <class|object>

Additional scaling function for KML colorization.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierScalingFunction

Default: de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling

Known implementations:

Parameter for:

-knndistanceorder.k <int>

Specifies the distance of the k-distant object to be assessed.

Default: 1

Parameter for:

-knndistanceorder.percentage <double>

The average percentage of distances randomly choosen to be provided in the result.

Default: 1.0

Parameter for:

-knnjoin.k <int>

Specifies the k-nearest neighbors to be assigned.

Default: 1

Parameter for:

-knno.k <int>

k nearest neighbor

Parameter for:

-knnwod.k <int>

k nearest neighbor

Parameter for:

-lcss.pDelta <double>

the allowed deviation in x direction for LCSS alignment (positive double value, 0 <= pDelta <= 1)

Default: 0.1

Parameter for:

-lcss.pEpsilon <double>

the allowed deviation in y directionfor LCSS alignment (positive double value, 0 <= pEpsilon <= 1)

Default: 0.05

Parameter for:

-ldof.k <int>

The number of nearest neighbors of an object to be considered for computing its LDOF_SCORE.

Parameter for:

-linearscale.ignorezero <|true|false>

Ignore zero entries when computing the minimum and maximum.

Default: false

Parameter for:

-linearscale.max <double>

Fixed maximum to use in linear scaling.

Parameter for:

-linearscale.min <double>

Fixed minimum to use in lienar scaling.

Parameter for:

-linearscale.usemean <|true|false>

Use the mean as minimum for scaling.

Default: false

Parameter for:

-loader.diskcache <file>

File name of the disk cache to create.

Parameter for:

-loader.distance <class|object>

Distance function to cache.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

Parameter for:

-localpca.distancefunction <class|object>

The distance function used to select objects for running PCA.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-localpca.epsilon <distance>

The maximum radius of the neighborhood to be considered in the PCA.

Parameter for:

-localpca.k <int>

The number of nearest neighbors considered in the PCA. If this parameter is not set, k ist set to three times of the dimensionality of the database objects.

Parameter for:

-loci.alpha <double>

Scaling factor for averaging neighborhood

Default: 0.5

Parameter for:

-loci.nmin <int>

Minimum neighborhood size to be considered.

Default: 20

Parameter for:

-loci.rmax <distance>

The maximum radius of the neighborhood to be considered.

Parameter for:

-lof.k <int>

The number of nearest neighbors of an object to be considered for computing its LOF_SCORE.

Parameter for:

-lof.reachdistfunction <class|object>

Distance function to determine the reachability distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

Parameter for:

-loop.comparedistfunction <class|object>

Distance function to determine the reference set of an object.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-loop.kcomp <int>

The number of nearest neighbors of an object to be considered for computing its LOOP_SCORE.

Parameter for:

-loop.kref <int>

The number of nearest neighbors of an object to be used for the PRD value.

Parameter for:

-loop.lambda <double>

The number of standard deviations to consider for density computation.

Default: 2.0

Parameter for:

-loop.referencedistfunction <class|object>

Distance function to determine the density of an object.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

Parameter for:

-lpnorm.p <double>

the degree of the L-P-Norm (positive number)

Parameter for:

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

Parameter for:

-metaoutlier.scaling <class|object>

Class to use as scaling function.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.ScalingFunction

Known implementations:

Parameter for:

-mkapp.k <int>

positive integer specifying the maximum number k of reverse k nearest neighbors to be supported.

Parameter for:

-mkapp.nolog <|true|false>

Flag to indicate that the approximation is done in the ''normal'' space instead of the log-log space (which is default).

Default: false

Parameter for:

-mkapp.p <int>

positive integer specifying the order of the polynomial approximation.

Parameter for:

-mkcop.k <int>

positive integer specifying the maximum number k of reverse k nearest neighbors to be supported.

Parameter for:

-mktree.kmax <int>

Specifies the maximal number k of reverse k nearest neighbors to be supported.

Parameter for:

-mmo.c <double>

cutoff

Default: 1.0E-7

Parameter for:

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

Parameter for:

-neighborhood.distancefunction <class|object>

the distance function to use

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

Parameter for:

-neighborhood.inner <class|object>

Parameter for the non-weighted neighborhood to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

Parameter for:

-neighborhood.k <int>

the number of neighbors

Parameter for:

-normalize.max <double_1,...,double_n>

a comma separated concatenation of the maximum values in each dimension that are mapped to 1. If no value is specified, the maximum value of the attribute range in this dimension will be taken.

Parameter for:

-normalize.mean <double_1,...,double_n>

a comma separated concatenation of the mean values in each dimension that are mapped to 0. If no value is specified, the mean value of the attribute range in this dimension will be taken.

Parameter for:

-normalize.min <double_1,...,double_n>

a comma separated concatenation of the minimum values in each dimension that are mapped to 0. If no value is specified, the minimum value of the attribute range in this dimension will be taken.

Parameter for:

-normalize.stddev <double_1,...,double_n>

a comma separated concatenation of the standard deviations in each dimension that are scaled to 1. If no value is specified, the standard deviation of the attribute range in this dimension will be taken.

Parameter for:

-optics.epsilon <distance>

The maximum radius of the neighborhood to be considered.

Parameter for:

-optics.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

Parameter for:

-opticsxi.algorithm <class>

The actual OPTICS-type algorithm to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICSTypeAlgorithm

Default: de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS

Known implementations:

Parameter for:

-opticsxi.xi <double>

Threshold for the steepness requirement.

Parameter for:

-orclus.alpha <double>

The factor for reducing the number of current clusters in each iteration.

Default: 0.5

Parameter for:

-orclus.seed <long>

The random number generator seed.

Parameter for:

-out <file>

Filename the KMZ file (compressed KML) is written to.

Parameter for:

-out.gzip <|true|false>

Enable gzip compression of output files.

Default: false

Parameter for:

-out.silentoverwrite <|true|false>

Silently overwrite output files.

Default: false

Parameter for:

-outlier.pattern <pattern>

Label pattern to match outliers.

Default: .*(Outlier|Noise).*

Parameter for:

-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

Parameter for:

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

Parameter for:

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

Parameter for:

-partknn.p <int>

The number of partitions to use for approximate kNN.

Parameter for:

-pca.big <double>

A constant big value to reset high eigenvalues.

Default: 1.0

Parameter for:

-pca.covariance <class|object>

Class used to compute the covariance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.CovarianceMatrixBuilder

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.StandardCovarianceMatrixBuilder

Known implementations:

Parameter for:

-pca.filter <class|object>

Filter class to determine the strong and weak eigenvectors.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPairFilter

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PercentageEigenPairFilter

Known implementations:

Parameter for:

-pca.filter.absolute <|true|false>

Flag to mark delta as an absolute value.

Default: false

Parameter for:

-pca.filter.alpha <double>

The share (0.0 to 1.0) of variance that needs to be explained by the 'strong' eigenvectors.The filter class will choose the number of strong eigenvectors by this share.

Default: 0.85

Parameter for:

-pca.filter.composite.list <object_1|class_1,...,object_n|class_n>

A comma separated list of the class names of the filters to be used. The specified filters will be applied sequentially in the given order.

Parameter for:

-pca.filter.delta <double>

The threshold for strong Eigenvalues. If not otherwise specified, delta is a relative value w.r.t. the (absolute) highest Eigenvalues and has to be a double between 0 and 1. To mark delta as an absolute value, use the option -pca.filter.absolute.

Default: 0.01

Parameter for:

-pca.filter.n <int>

The number of strong eigenvectors: n eigenvectors with the n highesteigenvalues are marked as strong eigenvectors.

Parameter for:

-pca.filter.progressivealpha <double>

The share (0.0 to 1.0) of variance that needs to be explained by the 'strong' eigenvectors.The filter class will choose the number of strong eigenvectors by this share.

Default: 0.5

Parameter for:

-pca.filter.relativealpha <double>

The sensitivity niveau for weak eigenvectors: An eigenvector which is at less than the given share of the statistical average variance is considered weak.

Default: 1.1

Parameter for:

-pca.filter.weakalpha <double>

The minimum strength of the statistically expected variance (1/n) share an eigenvector needs to have to be considered 'strong'.

Default: 0.95

Parameter for:

-pca.small <double>

A constant small value to reset low eigenvalues.

Default: 0.0

Parameter for:

-pca.weight <class|object>

Weight function to use in weighted PCA.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.WeightFunction

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ConstantWeight

Known implementations:

Parameter for:

-pcabasedcorrelationdf.delta <double>

Threshold of a distance between a vector q and a given space that indicates that q adds a new dimension to the space.

Default: 0.25

Parameter for:

-predecon.delta <double>

a double between 0 and 1 specifying the threshold for small Eigenvalues (default is delta = 0.01).

Default: 0.01

Parameter for:

-proclus.mi <int>

The multiplier for the initial number of medoids.

Default: 10

Parameter for:

-proclus.seed <long>

The random number generator seed.

Parameter for:

-projdbscan.distancefunction <class|object>

Distance function to determine the neighbors for variance analysis.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-projdbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

Parameter for:

-projdbscan.lambda <int>

The intrinsic dimensionality of the clusters to find.

Parameter for:

-projdbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

Parameter for:

-projdbscan.outerdistancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: extends de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Known implementations:

Parameter for:

-projectedclustering.k <int>

The number of clusters to find.

Parameter for:

-projectedclustering.k_i <int>

The multiplier for the initial number of seeds.

Default: 30

Parameter for:

-projectedclustering.l <int>

The dimensionality of the clusters to find.

Parameter for:

-projhistogram.bins <int>

Number of bins in the distribution histogram

Default: 50

Parameter for:

-projhistogram.curves <|true|false>

Use curves instead of the stacked histogram style.

Default: false

Parameter for:

-randomwalkec.alpha <double>

Scaling exponent for value differences.

Default: 0.5

Parameter for:

-randomwalkec.c <double>

The damping parameter c.

Parameter for:

-randomwalkec.k <int>

Number of nearest neighbors to use.

Parameter for:

-rankqual.bins <int>

Number of bins to use in the histogram

Default: 20

Parameter for:

-reachdist.basedistance <class|object>

Base distance function to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-reachdist.k <int>

The number of nearest neighbors of an object to be considered for computing its reachability distance.

Parameter for:

-refod.k <int>

The number of nearest neighbors

Parameter for:

-refod.refp <class|object>

The heuristic for finding reference points.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.referencepoints.ReferencePointsHeuristic

Default: de.lmu.ifi.dbs.elki.utilities.referencepoints.GridBasedReferencePoints

Known implementations:

Parameter for:

-resulthandler <object_1|class_1,...,object_n|class_n>

Result handler class.

Parameter for:

-rgbhist.bpp <int>

Bins per plane for RGB histogram. This will result in bpp ** 3 bins.

Parameter for:

-rtree.insertion-candidates <int>

defines how many children are tested for finding the child generating the least overlap when inserting an object.

Parameter for:

-rtree.insertionstrategy <class>

The strategy to use for object insertion.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.InsertionStrategy

Default: de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.LeastOverlapInsertionStrategy

Known implementations:

Parameter for:

-sample.n <int>

The number of samples to draw.

Parameter for:

-scaling.gamma <double>

Gamma value for scaling.

Parameter for:

-selectionrange.nofill <|true|false>

Use wireframe style for selection ranges.

Default: false

Parameter for:

-sharedNearestNeighbors <int>

number of nearest neighbors to consider (at least 1)

Default: 1

Parameter for:

-similarityfunction.preprocessor <class|object>

Preprocessor to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory

Known implementations:

Parameter for:

-slink.minclusters <int>

The maximum number of clusters to extract.

Parameter for:

-snn.epsilon <distance>

The minimum SNN density.

Parameter for:

-snn.minpts <int>

Threshold for minimum number of points in the epsilon-SNN-neighborhood of a point.

Parameter for:

-SNNDistanceFunction <class|object>

the distance function to asses the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

Parameter for:

-sod.alpha <double>

The multiplier for the discriminance value for discerning small from large variances.

Default: 1.1

Parameter for:

-sod.knn <int>

The number of shared nearest neighbors to be considered for learning the subspace properties.

Default: 1

Parameter for:

-spatial.bulkstrategy <class|object>

The class to perform the bulk split with.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk.BulkSplit

Known implementations:

Parameter for:

-sqrtscale.max <double>

Fixed maximum to use in sqrt scaling.

Parameter for:

-sqrtscale.min <double>

Fixed minimum to use in sqrt scaling.

Parameter for:

-sqrtstddevscale.lambda <double>

Significance level to use for error function.

Default: 3.0

Parameter for:

-sqrtstddevscale.mean <double>

Fixed mean to use in standard deviation scaling.

Parameter for:

-sqrtstddevscale.min <double>

Fixed minimum to use in sqrt scaling.

Parameter for:

-star.nocenter <|true|false>

Do not use the center as extra reference point.

Default: false

Parameter for:

-star.scale <double>

Scale the reference points by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

Parameter for:

-stddevscale.lambda <double>

Significance level to use for error function.

Default: 3.0

Parameter for:

-stddevscale.mean <double>

Fixed mean to use in standard deviation scaling.

Parameter for:

-subclu.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: extends de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractDimensionsSelectingDoubleDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.DimensionsSelectingEuclideanDistanceFunction

Known implementations:

Parameter for:

-subclu.epsilon <distance>

The maximum radius of the neighborhood to be considered.

Parameter for:

-subclu.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

Parameter for:

-tma.p <double>

the percentile parameter

Parameter for:

-tooltip.digits <int>

Number of digits to show (e.g. when visualizing outlier scores)

Default: 4

Parameter for:

-topk.binary <|true|false>

Make the top k a binary scaling.

Default: false

Parameter for:

-topk.k <int>

Number of outliers to keep.

Parameter for:

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

Parameter for:

-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

Parameter for:

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

Parameter for:

-verbose <|true|false>

Enable verbose messages.

Default: false

Parameter for:

-vis.hide <pattern>

Visualizers to not show by default. Use 'none' to not hide any by default.

Default: ^experimentalcode\..*

Parameter for:

-vis.maxdim <int>

Maximum number of dimensions to display.

Default: 10

Parameter for:

-vis.window.title <string>

Title to use for visualization window.

Parameter for:

-visualizer.stylesheet <string>

Style properties file to use

Default: default

Parameter for: