ELKI command line parameter overview:

de.lmu.ifi.dbs.elki.algorithm.APRIORI
-apriori.minfreq <double>

Threshold for minimum frequency as percentage value (alternatively to parameter apriori.minsupp).

-apriori.minsupp <int>

Threshold for minimum support as minimally required number of transactions (alternatively to parameter apriori.minfreq - setting apriori.minsupp is slightly preferable over setting apriori.minfreq in terms of efficiency).

de.lmu.ifi.dbs.elki.algorithm.DependencyDerivator
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-derivator.accuracy <int>

Threshold for output accuracy fraction digits.

Default: 4

-derivator.sampleSize <int>

Threshold for the size of the random sample to use. Default value is size of the complete dataset.

-derivator.randomSample <|true|false>

Flag to use random sample (use knn query around centroid, if flag is not set).

Default: false

de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-knndistanceorder.k <int>

Specifies the distance of the k-distant object to be assessed.

Default: 1

-knndistanceorder.percentage <double>

The average percentage of distances randomly choosen to be provided in the result.

Default: 1.0

de.lmu.ifi.dbs.elki.algorithm.KNNJoin
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-knnjoin.k <int>

Specifies the k-nearest neighbors to be assigned.

Default: 1

de.lmu.ifi.dbs.elki.algorithm.MaterializeDistances
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-dbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-dbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

de.lmu.ifi.dbs.elki.algorithm.clustering.DeLiClu
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-deliclu.minpts <int>

Threshold for minimum number of points within a cluster.

de.lmu.ifi.dbs.elki.algorithm.clustering.EM
-em.k <int>

The number of clusters to find.

-em.delta <double>

The termination criterion for maximization of E(M): E(M) - E(M') < em.delta

Default: 0.0

-em.seed <long>

The random number generator seed.

de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-kmeans.k <int>

The number of clusters to find.

-kmeans.maxiter <int>

The maximum number of iterations to do. 0 means no limit.

Default: 0

-kmeans.seed <long>

The random number generator seed.

de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-optics.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-optics.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICSXi
-opticsxi.xi <double>

Threshold for the steepness requirement.

-opticsxi.algorithm <class>

The actual OPTICS-type algorithm to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICSTypeAlgorithm

Default: de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.clustering.SLINK
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-slink.minclusters <int>

The maximum number of clusters to extract.

de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
-snn.epsilon <distance>

The minimum SNN density.

-snn.minpts <int>

Threshold for minimum number of points in the epsilon-SNN-neighborhood of a point.

de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.CASH
-cash.minpts <int>

Threshold for minimum number of points in a cluster.

-cash.maxlevel <int>

The maximum level for splitting the hypercube.

-cash.mindim <int>

The minimum dimensionality of the subspaces to be found.

Default: 1

-cash.jitter <double>

The maximum jitter for distance values.

-cash.adjust <|true|false>

Flag to indicate that an adjustment of the applied heuristic for choosing an interval is performed after an interval is selected.

Default: false

de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.COPAC
-copac.preprocessor <class>

Local PCA Preprocessor to derive partition criterion.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.LocalProjectionIndex$Factory

Known implementations:

-copac.partitionDistance <class|object>

Distance to use for the inner algorithms.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.FilteredLocalPCABasedDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Known implementations:

-copac.partitionAlgorithm <class>

Clustering algorithm to apply to each partition.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.FourC
-projdbscan.distancefunction <class|object>

Distance function to determine the neighbors for variance analysis.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-projdbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-projdbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

-projdbscan.outerdistancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: extends de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Known implementations:

-projdbscan.lambda <int>

The intrinsic dimensionality of the clusters to find.

de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO
-hico.mu <int>

Specifies the smoothing factor. The mu-nearest neighbor is used to compute the correlation reachability of an object.

-hico.k <int>

Optional parameter to specify the number of nearest neighbors considered in the PCA. If this parameter is not set, k is set to the value of parameter mu.

-hico.delta <double>

Threshold of a distance between a vector q and a given space that indicates that q adds a new dimension to the space.

Default: 0.25

-hico.alpha <double>

The threshold for 'strong' eigenvectors: the 'strong' eigenvectors explain a portion of at least alpha of the total variance.

Default: 0.85

de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ORCLUS
-projectedclustering.k <int>

The number of clusters to find.

-projectedclustering.k_i <int>

The multiplier for the initial number of seeds.

Default: 30

-projectedclustering.l <int>

The dimensionality of the clusters to find.

-orclus.alpha <double>

The factor for reducing the number of current clusters in each iteration.

Default: 0.5

-orclus.seed <long>

The random number generator seed.

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.CLIQUE
-clique.xsi <int>

The number of intervals (units) in each dimension.

-clique.tau <double>

The density threshold for the selectivity of a unit, where the selectivity isthe fraction of total feature vectors contained in this unit.

-clique.prune <|true|false>

Flag to indicate that only subspaces with large coverage (i.e. the fraction of the database that is covered by the dense units) are selected, the rest will be pruned.

Default: false

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
-dish.epsilon <double>

The maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector.

Default: 0.0010

-dish.mu <int>

The minimum number of points as a smoothing factor to avoid the single-link-effekt.

Default: 1

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC
-hisc.alpha <double>

The maximum absolute variance along a coordinate axis.

Default: 0.01

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PROCLUS
-projectedclustering.k <int>

The number of clusters to find.

-projectedclustering.k_i <int>

The multiplier for the initial number of seeds.

Default: 30

-projectedclustering.l <int>

The dimensionality of the clusters to find.

-proclus.mi <int>

The multiplier for the initial number of medoids.

Default: 10

-proclus.seed <long>

The random number generator seed.

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PreDeCon
-projdbscan.distancefunction <class|object>

Distance function to determine the neighbors for variance analysis.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-projdbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-projdbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

-projdbscan.outerdistancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: extends de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction

Known implementations:

-projdbscan.lambda <int>

The intrinsic dimensionality of the clusters to find.

de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU
-subclu.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: extends de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractDimensionsSelectingDoubleDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.DimensionsSelectingEuclideanDistanceFunction

Known implementations:

-subclu.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-subclu.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering
-bylabelclustering.multiple <|true|false>

Flag to indicate that only subspaces with large coverage (i.e. the fraction of the database that is covered by the dense units) are selected, the rest will be pruned.

Default: false

-bylabelclustering.noise <pattern>

Pattern to recognize noise classes by their label.

de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-abod.k <int>

Parameter k for kNN queries.

Default: 30

-abod.samplesize <int>

Sample size to enable fast mode.

-abod.kernelfunction <class|object>

Kernel function to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.PrimitiveSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.PolynomialKernelFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.AggarwalYuEvolutionary
-ay.k <int>

Subspace dimensionality to search for.

-ay.phi <int>

The number of equi-depth grid ranges to use in each dimension.

-ay.m <int>

Population size for evolutionary algorithm.

-ay.seed <long>

The random number generator seed.

de.lmu.ifi.dbs.elki.algorithm.outlier.AggarwalYuNaive
-ay.k <int>

Subspace dimensionality to search for.

-ay.phi <int>

The number of equi-depth grid ranges to use in each dimension.

de.lmu.ifi.dbs.elki.algorithm.outlier.DBOutlierDetection
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-dbod.d <distance>

size of the D-neighborhood

-dbod.p <double>

minimum fraction of objects that must be outside the D-neighborhood of an outlier

de.lmu.ifi.dbs.elki.algorithm.outlier.DBOutlierScore
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-dbod.d <distance>

size of the D-neighborhood

de.lmu.ifi.dbs.elki.algorithm.outlier.GaussianModel
-gaussod.invert <|true|false>

Invert the value range to [0:1], with 1 being outliers instead of 0.

Default: false

de.lmu.ifi.dbs.elki.algorithm.outlier.GaussianUniformMixture
-mmo.c <double>

cutoff

Default: 1.0E-7

de.lmu.ifi.dbs.elki.algorithm.outlier.INFLO
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-inflo.m <double>

The threshold

Default: 1.0

-inflo.k <int>

The number of nearest neighbors of an object to be considered for computing its INFLO_SCORE.

de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-knno.k <int>

k nearest neighbor

de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-knnwod.k <int>

k nearest neighbor

de.lmu.ifi.dbs.elki.algorithm.outlier.LDOF
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-ldof.k <int>

The number of nearest neighbors of an object to be considered for computing its LDOF_SCORE.

de.lmu.ifi.dbs.elki.algorithm.outlier.LOCI
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-loci.rmax <distance>

The maximum radius of the neighborhood to be considered.

-loci.nmin <int>

Minimum neighborhood size to be considered.

Default: 20

-loci.alpha <double>

Scaling factor for averaging neighborhood

Default: 0.5

de.lmu.ifi.dbs.elki.algorithm.outlier.LOF
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-lof.k <int>

The number of nearest neighbors of an object to be considered for computing its LOF_SCORE.

-lof.reachdistfunction <class|object>

Distance function to determine the reachability distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP
-loop.kcomp <int>

The number of nearest neighbors of an object to be considered for computing its LOOP_SCORE.

-loop.comparedistfunction <class|object>

Distance function to determine the reference set of an object.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-loop.kref <int>

The number of nearest neighbors of an object to be used for the PRD value.

-loop.referencedistfunction <class|object>

Distance function to determine the density of an object.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

-loop.lambda <double>

The number of standard deviations to consider for density computation.

Default: 2.0

de.lmu.ifi.dbs.elki.algorithm.outlier.OPTICSOF
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-optics.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-lof.k <int>

The number of nearest neighbors of an object to be considered for computing its LOF_SCORE.

-lof.reachdistfunction <class|object>

Distance function to determine the reachability distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-refod.k <int>

The number of nearest neighbors

-refod.refp <class|object>

The heuristic for finding reference points.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.referencepoints.ReferencePointsHeuristic

Default: de.lmu.ifi.dbs.elki.utilities.referencepoints.GridBasedReferencePoints

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.SOD
-sod.knn <int>

The number of shared nearest neighbors to be considered for learning the subspace properties.

Default: 1

-sod.alpha <double>

The multiplier for the discriminance value for discerning small from large variances.

Default: 1.1

de.lmu.ifi.dbs.elki.algorithm.outlier.meta.ExternalDoubleOutlierScore
-externaloutlier.file <file>

The file name containing the (external) outlier scores.

-externaloutlier.idpattern <pattern>

The pattern to match object ID prefix

Default: ^ID=

-externaloutlier.scorepattern <pattern>

The pattern to match object score prefix

-externaloutlier.inverted <|true|false>

Flag to signal an inverted outlier score.

Default: false

-externaloutlier.scaling <class|object>

Class to use as scaling function.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.ScalingFunction

Default: de.lmu.ifi.dbs.elki.utilities.scaling.IdentityScaling

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging
-lof.k <int>

The number of nearest neighbors of an object to be considered for computing its LOF_SCORE.

-fbagging.num <int>

The number of instances to use in the ensemble.

-fbagging.breadth <|true|false>

Use the breadth first combinations instead of the cumulative sum approach

Default: false

-fbagging.seed <long>

Specify a particular random seed.

de.lmu.ifi.dbs.elki.algorithm.outlier.meta.RescaleMetaOutlierAlgorithm
-algorithm <class|object>

Algorithm to run.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm

Known implementations:

-metaoutlier.scaling <class|object>

Class to use as scaling function.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.ScalingFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-glsbs.alpha <double>

Significance niveau

-glsbs.k <int>

k nearest neighbors to use

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuMeanMultipleAttributes
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuMedianAlgorithm
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuMedianMultipleAttributes
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuMoranScatterplotOutlier
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-randomwalkec.k <int>

Number of nearest neighbors to use.

-randomwalkec.alpha <double>

Scaling exponent for value differences.

Default: 0.5

-randomwalkec.c <double>

The damping parameter c.

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuScatterplotOutlier
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuZTestOutlier
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.SLOM
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.SOF
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.PrimitiveDistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.TrimmedMeanApproach
-neighborhood <class|object>

The neighborhood predicate to use in comparison step.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

-tma.p <double>

the percentile parameter

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood$Factory
-extendedneighbors.neighborhood <class|object>

The inner neighborhood predicate to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

-extendedneighbors.steps <int>

The number of steps allowed in the neighborhood graph.

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExternalNeighborhood$Factory
-externalneighbors.file <file>

The file listing the neighbors.

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood$Factory
-neighborhood.k <int>

the number of neighbors

-neighborhood.distancefunction <class|object>

the distance function to use

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted.LinearWeightedExtendedNeighborhood$Factory
-extendedneighbors.neighborhood <class|object>

The inner neighborhood predicate to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

-extendedneighbors.steps <int>

The number of steps allowed in the neighborhood graph.

de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted.UnweightedNeighborhoodAdapter$Factory
-neighborhood.inner <class|object>

Parameter for the non-weighted neighborhood to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.NeighborSetPredicate$Factory

Known implementations:

de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.ByLabelOutlier
-outlier.pattern <pattern>

Label pattern to match outliers.

Default: .*(Outlier|Noise).*

de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-diststat.bins <int>

Number of bins to use in the histogram. By default, it is only guaranteed to be within 1*n and 2*n of the given number.

Default: 20

-diststat.exact <|true|false>

In a first pass, compute the exact minimum and maximum, at the cost of O(2*n*n) instead of O(n*n). The number of resulting bins is guaranteed to be as requested.

Default: false

-diststat.sampling <|true|false>

Enable sampling of O(n) size to determine the minimum and maximum distances approximately. The resulting number of bins can be larger than the given n.

Default: false

de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-rankqual.bins <int>

Number of bins to use in the histogram

Default: 20

de.lmu.ifi.dbs.elki.algorithm.statistics.RankingQualityHistogram
-algorithm.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-rankqual.bins <int>

Number of bins to use in the histogram

Default: 100

de.lmu.ifi.dbs.elki.application.ComputeSingleColorHistogram
-verbose <|true|false>

Enable verbose messages.

Default: false

-colorhist.generator <class|object>

Class that is used to generate a color histogram.

Class Restriction: implements de.lmu.ifi.dbs.elki.data.images.ComputeColorHistogram

Default: de.lmu.ifi.dbs.elki.data.images.ComputeNaiveRGBColorHistogram

Known implementations:

-colorhist.in <file>

Input image for color histograms.

de.lmu.ifi.dbs.elki.application.GeneratorXMLSpec
-verbose <|true|false>

Enable verbose messages.

Default: false

-app.out <file>

the file to write the generated data set into, if the file already exists, the generated points will be appended to this file.

de.lmu.ifi.dbs.elki.application.KDDCLIApplication
-verbose <|true|false>

Enable verbose messages.

Default: false

de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceInOnDiskMatrix
-verbose <|true|false>

Enable verbose messages.

Default: false

-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

-loader.distance <class|object>

Distance function to cache.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

-loader.diskcache <file>

File name of the disk cache to create.

de.lmu.ifi.dbs.elki.application.cache.CacheFloatDistanceInOnDiskMatrix
-verbose <|true|false>

Enable verbose messages.

Default: false

-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

-loader.distance <class|object>

Distance function to cache.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Known implementations:

-loader.diskcache <file>

File name of the disk cache to create.

de.lmu.ifi.dbs.elki.application.jsmap.JSONResultHandler
-json.port <int>

Port for the JSON web server to listen on.

Default: 8080

de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer
-verbose <|true|false>

Enable verbose messages.

Default: false

-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

-explorer.distancefunction <class>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.data.images.ComputeHSBColorHistogram
-hsbhist.bpp <int_1,...,int_n>

Bins per plane for HSV/HSB histogram. This will result in bpp ** 3 bins.

de.lmu.ifi.dbs.elki.data.images.ComputeNaiveHSBColorHistogram
-hsbhist.bpp <int>

Bins per plane for HSV/HSB histogram. This will result in bpp ** 3 bins.

de.lmu.ifi.dbs.elki.data.images.ComputeNaiveRGBColorHistogram
-rgbhist.bpp <int>

Bins per plane for RGB histogram. This will result in bpp ** 3 bins.

de.lmu.ifi.dbs.elki.database.HashmapDatabase
-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.DatabaseConnection

Default: de.lmu.ifi.dbs.elki.datasource.FileBasedDatabaseConnection

Known implementations:

-db.index <object_1|class_1,...,object_n|class_n>

Database indexes to add.

de.lmu.ifi.dbs.elki.database.StaticArrayDatabase
-dbc <class|object>

Database connection class.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.DatabaseConnection

Default: de.lmu.ifi.dbs.elki.datasource.FileBasedDatabaseConnection

Known implementations:

-db.index <object_1|class_1,...,object_n|class_n>

Database indexes to add.

de.lmu.ifi.dbs.elki.datasource.ExternalIDJoinDatabaseConnection
-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

-join.sources <object_1|class_1,...,object_n|class_n>

The data sources to join.

de.lmu.ifi.dbs.elki.datasource.FileBasedDatabaseConnection
-dbc.in <file>

The name of the input file to be parsed.

-dbc.parser <class|object>

Parser to provide the database.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.Parser

Default: de.lmu.ifi.dbs.elki.datasource.parser.DoubleVectorLabelParser

Known implementations:

-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

de.lmu.ifi.dbs.elki.datasource.GeneratorXMLDatabaseConnection
-bymodel.spec <file>

The generator specification file.

-bymodel.sizescale <double>

Factor for scaling the specified cluster sizes.

Default: 1.0

-bymodel.randomseed <int>

The random generator seed.

de.lmu.ifi.dbs.elki.datasource.InputStreamDatabaseConnection
-dbc.parser <class|object>

Parser to provide the database.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.Parser

Default: de.lmu.ifi.dbs.elki.datasource.parser.DoubleVectorLabelParser

Known implementations:

-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

de.lmu.ifi.dbs.elki.datasource.LabelJoinDatabaseConnection
-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

-join.sources <object_1|class_1,...,object_n|class_n>

The data sources to join.

de.lmu.ifi.dbs.elki.datasource.RandomDoubleVectorDatabaseConnection
-dbc.filter <object_1|class_1,...,object_n|class_n>

The filters to apply to the input data.

-dbc.dim <int>

Dimensionality of the vectors to generate.

-dbc.size <int>

Database size to generate.

-dbc.genseed <long>

Seed for randomly generating vectors

de.lmu.ifi.dbs.elki.datasource.filter.AttributeWiseMinMaxNormalization
-normalize.min <double_1,...,double_n>

a comma separated concatenation of the minimum values in each dimension that are mapped to 0. If no value is specified, the minimum value of the attribute range in this dimension will be taken.

-normalize.max <double_1,...,double_n>

a comma separated concatenation of the maximum values in each dimension that are mapped to 1. If no value is specified, the maximum value of the attribute range in this dimension will be taken.

de.lmu.ifi.dbs.elki.datasource.filter.AttributeWiseVarianceNormalization
-normalize.mean <double_1,...,double_n>

a comma separated concatenation of the mean values in each dimension that are mapped to 0. If no value is specified, the mean value of the attribute range in this dimension will be taken.

-normalize.stddev <double_1,...,double_n>

a comma separated concatenation of the standard deviations in each dimension that are scaled to 1. If no value is specified, the standard deviation of the attribute range in this dimension will be taken.

de.lmu.ifi.dbs.elki.datasource.parser.ArffParser
-arff.externalid <pattern>

Pattern to recognize external ID attributes.

Default: (ID|External-?ID)

-arff.classlabel <pattern>

Pattern to recognize class label attributes.

Default: (Class|Class-?Label)

de.lmu.ifi.dbs.elki.datasource.parser.BitVectorLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

de.lmu.ifi.dbs.elki.datasource.parser.DoubleVectorLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

de.lmu.ifi.dbs.elki.datasource.parser.DoubleVectorLabelTransposingParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

de.lmu.ifi.dbs.elki.datasource.parser.FloatVectorLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

de.lmu.ifi.dbs.elki.datasource.parser.ParameterizationFunctionLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

de.lmu.ifi.dbs.elki.datasource.parser.SimplePolygonParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

de.lmu.ifi.dbs.elki.datasource.parser.SparseBitVectorLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

de.lmu.ifi.dbs.elki.datasource.parser.SparseFloatVectorLabelParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
-parser.colsep <pattern>

Column separator pattern. The default assumes whitespace separated data.

Default: \s+

-parser.quote <string>

Quotation character. The default is to use a double quote.

Default: "

-parser.labelIndices <int_1,...,int_n>

A comma separated list of the indices of labels (may be numeric), counting whitespace separated entries in a line starting with 0. The corresponding entries will be treated as a label.

de.lmu.ifi.dbs.elki.distance.distancefunction.LPNormDistanceFunction
-lpnorm.p <double>

the degree of the L-P-Norm (positive number)

de.lmu.ifi.dbs.elki.distance.distancefunction.LocallyWeightedDistanceFunction
-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.LocalProjectionIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
-reachdist.k <int>

The number of nearest neighbors of an object to be considered for computing its reachability distance.

-reachdist.basedistance <class|object>

Base distance function to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.SharedNearestNeighborJaccardDistanceFunction
-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.SimilarityAdapterArccos
-adapter.similarityfunction <class|object>

Similarity function to derive the distance between database objects from.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.NormalizedSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.FractionalSharedNearestNeighborSimilarityFunction

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.SimilarityAdapterLinear
-adapter.similarityfunction <class|object>

Similarity function to derive the distance between database objects from.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.NormalizedSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.FractionalSharedNearestNeighborSimilarityFunction

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.SimilarityAdapterLn
-adapter.similarityfunction <class|object>

Similarity function to derive the distance between database objects from.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.similarityfunction.NormalizedSimilarityFunction

Default: de.lmu.ifi.dbs.elki.distance.similarityfunction.FractionalSharedNearestNeighborSimilarityFunction

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.HSBHistogramQuadraticDistanceFunction
-hsbhist.bpp <int_1,...,int_n>

The dimensionality of the histogram in hue, saturation and brightness.

de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.RGBHistogramQuadraticDistanceFunction
-rgbhist.bpp <int>

The dimensionality of the histogram in each color

de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.ERiCDistanceFunction
-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.localpca.FilteredLocalPCAIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory

Known implementations:

-ericdf.delta <double>

Threshold for approximate linear dependency: the strong eigenvectors of q are approximately linear dependent from the strong eigenvectors p if the following condition holds for all stroneg eigenvectors q_i of q (lambda_q < lambda_p): q_i' * M^check_p * q_i <= delta^2.

Default: 0.1

-ericdf.tau <double>

Threshold for the maximum distance between two approximately linear dependent subspaces of two objects p and q (lambda_q < lambda_p) before considering them as parallel.

Default: 0.1

de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.PCABasedCorrelationDistanceFunction
-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.localpca.FilteredLocalPCAIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory

Known implementations:

-pcabasedcorrelationdf.delta <double>

Threshold of a distance between a vector q and a given space that indicates that q adds a new dimension to the space.

Default: 0.25

de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedDoubleDistanceFunction
-distance.matrix <file>

The name of the file containing the distance matrix.

de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedFloatDistanceFunction
-distance.matrix <file>

The name of the file containing the distance matrix.

de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedDoubleDistanceFunction
-distance.matrix <file>

The name of the file containing the distance matrix.

-distance.parser <class|object>

Parser used to load the distance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.DistanceParser

Default: de.lmu.ifi.dbs.elki.datasource.parser.NumberDistanceParser

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedFloatDistanceFunction
-distance.matrix <file>

The name of the file containing the distance matrix.

-distance.parser <class|object>

Parser used to load the distance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.datasource.parser.DistanceParser

Default: de.lmu.ifi.dbs.elki.datasource.parser.NumberDistanceParser

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.geo.DimensionSelectingLatLngDistanceFunction
-distance.latitudedim <int>

The dimension containing the latitude.

-distance.longitudedim <int>

The dimension containing the longitude.

de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.DiSHDistanceFunction
-distancefunction.epsilon <double>

The maximum distance between two vectors with equal preference vectors before considering them as parallel.

Default: 0.0010

de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.DimensionSelectingDistanceFunction
-dim <int>

an integer between 1 and the dimensionality of the feature space 1 specifying the dimension to be considered for distance computation.

de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.DimensionsSelectingEuclideanDistanceFunction
-distance.dims <int_1,...,int_n>

a comma separated array of integer values, where 1 <= d_i <= the dimensionality of the feature space specifying the dimensions to be considered for distance computation. If this parameter is not set, no dimensions will be considered, i.e. the distance between two objects is always 0.

de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.HiSCDistanceFunction
-distancefunction.epsilon <double>

The maximum distance between two vectors with equal preference vectors before considering them as parallel.

Default: 0.0010

de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceDistanceFunction
-distancefunction.index <class|object>

Distance index to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.LocalProjectionIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory

Known implementations:

de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.DTWDistanceFunction
-edit.bandSize <double>

the band size for Edit Distance alignment (positive double value, 0 <= bandSize <= 1)

Default: 0.1

de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
-edit.bandSize <double>

the band size for Edit Distance alignment (positive double value, 0 <= bandSize <= 1)

Default: 0.1

-edr.delta <double>

the delta parameter (similarity threshold) for EDR (positive number)

Default: 1.0

de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
-edit.bandSize <double>

the band size for Edit Distance alignment (positive double value, 0 <= bandSize <= 1)

Default: 0.1

-erp.g <double>

the g parameter ERP (positive number)

Default: 0.0

de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.LCSSDistanceFunction
-lcss.pDelta <double>

the allowed deviation in x direction for LCSS alignment (positive double value, 0 <= pDelta <= 1)

Default: 0.1

-lcss.pEpsilon <double>

the allowed deviation in y directionfor LCSS alignment (positive double value, 0 <= pEpsilon <= 1)

Default: 0.05

de.lmu.ifi.dbs.elki.distance.similarityfunction.FractionalSharedNearestNeighborSimilarityFunction
-similarityfunction.preprocessor <class|object>

Preprocessor to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory

Known implementations:

de.lmu.ifi.dbs.elki.distance.similarityfunction.SharedNearestNeighborSimilarityFunction
-similarityfunction.preprocessor <class|object>

Preprocessor to use.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborIndex$Factory

Default: de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory

Known implementations:

de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.FooKernelFunction
-fookernel.max_degree <int>

The max degree of theFooKernelFunction. Default: 2

Default: 2

de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.PolynomialKernelFunction
-kernel.degree <double>

The degree of the polynomial kernel function. Default: 2.0

Default: 2.0

de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNAndRKNNPreprocessor$Factory
-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor$Factory
-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.preprocessed.knn.MetricalIndexApproximationMaterializeKNNPreprocessor$Factory
-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.preprocessed.knn.PartitionApproximationMaterializeKNNPreprocessor$Factory
-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-partknn.p <int>

The number of partitions to use for approximate kNN.

de.lmu.ifi.dbs.elki.index.preprocessed.knn.SpatialApproximationMaterializeKNNPreprocessor$Factory
-materialize.k <int>

The number of nearest neighbors of an object to be materialized.

-materialize.distance <class|object>

the distance function to materialize the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex$Factory
-localpca.distancefunction <class|object>

The distance function used to select objects for running PCA.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-localpca.k <int>

The number of nearest neighbors considered in the PCA. If this parameter is not set, k ist set to three times of the dimensionality of the database objects.

de.lmu.ifi.dbs.elki.index.preprocessed.localpca.RangeQueryFilteredPCAIndex$Factory
-localpca.distancefunction <class|object>

The distance function used to select objects for running PCA.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-localpca.epsilon <distance>

The maximum radius of the neighborhood to be considered in the PCA.

de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex$Factory
-dish.strategy <APRIORI | MAX_INTERSECTION>

The strategy for determination of the preference vector, available strategies are: [APRIORI| MAX_INTERSECTION](default is MAX_INTERSECTION)

Default: MAX_INTERSECTION

-dish.minpts <int>

Positive threshold for minumum numbers of points in the epsilon-neighborhood of a point. The value of the preference vector in dimension d_i is set to 1 if the epsilon neighborhood contains more than dish.minpts points and the following condition holds: for all dimensions d_j: |neighbors(d_i) intersection neighbors(d_j)| >= dish.minpts.

-dish.epsilon <double_1,...,double_n>

A comma separated list of positive doubles specifying the maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector (default is 0.0010 in each dimension). If only one value is specified, this value will be used for each dimension.

Default: [0.0010]

de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex$Factory
-hisc.k <int>

The number of nearest neighbors considered to determine the preference vector. If this value is not defined, k ist set to three times of the dimensionality of the database objects.

-hisc.alpha <double>

The maximum absolute variance along a coordinate axis.

Default: 0.01

de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor$Factory
-sharedNearestNeighbors <int>

number of nearest neighbors to consider (at least 1)

Default: 1

-SNNDistanceFunction <class|object>

the distance function to asses the nearest neighbors

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj.FourCSubspaceIndex$Factory
-projdbscan.distancefunction <class|object>

Distance function to determine the neighbors for variance analysis.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-projdbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-projdbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

-pca.filter.absolute <|true|false>

Flag to mark delta as an absolute value.

Default: false

-pca.filter.delta <double>

The threshold for strong Eigenvalues. If not otherwise specified, delta is a relative value w.r.t. the (absolute) highest Eigenvalues and has to be a double between 0 and 1. To mark delta as an absolute value, use the option -pca.filter.absolute.

Default: 0.01

de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj.PreDeConSubspaceIndex$Factory
-projdbscan.distancefunction <class|object>

Distance function to determine the neighbors for variance analysis.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-projdbscan.epsilon <distance>

The maximum radius of the neighborhood to be considered.

-projdbscan.minpts <int>

Threshold for minimum number of points in the epsilon-neighborhood of a point.

-predecon.delta <double>

a double between 0 and 1 specifying the threshold for small Eigenvalues (default is delta = 0.01).

Default: 0.01

de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-mkapp.k <int>

positive integer specifying the maximum number k of reverse k nearest neighbors to be supported.

-mkapp.p <int>

positive integer specifying the order of the polynomial approximation.

-mkapp.nolog <|true|false>

Flag to indicate that the approximation is done in the ''normal'' space instead of the log-log space (which is default).

Default: false

de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-mkcop.k <int>

positive integer specifying the maximum number k of reverse k nearest neighbors to be supported.

de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-mktree.kmax <int>

Specifies the maximal number k of reverse k nearest neighbors to be supported.

de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

-mktree.kmax <int>

Specifies the maximal number k of reverse k nearest neighbors to be supported.

de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree.MTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-mtree.distancefunction <class|object>

Distance function to determine the distance between database objects.

Class Restriction: implements de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Default: de.lmu.ifi.dbs.elki.distance.distancefunction.EuclideanDistanceFunction

Known implementations:

de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-spatial.bulkstrategy <class|object>

The class to perform the bulk split with.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk.BulkSplit

Known implementations:

-rtree.insertionstrategy <class>

The strategy to use for object insertion.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.InsertionStrategy

Default: de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.LeastOverlapInsertionStrategy

Known implementations:

de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar.RStarTreeFactory
-treeindex.file <file>

The name of the file storing the index. If this parameter is not set the index is hold in the main memory.

-treeindex.pagesize <int>

The size of a page in bytes.

Default: 4000

-treeindex.cachesize <long>

The size of the cache in bytes.

Default: 2147483647

-spatial.bulkstrategy <class|object>

The class to perform the bulk split with.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk.BulkSplit

Known implementations:

-rtree.insertionstrategy <class>

The strategy to use for object insertion.

Class Restriction: implements de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.InsertionStrategy

Default: de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.LeastOverlapInsertionStrategy

Known implementations:

de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.ApproximateLeastOverlapInsertionStrategy
-rtree.insertion-candidates <int>

defines how many children are tested for finding the child generating the least overlap when inserting an object.

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.CompositeEigenPairFilter
-pca.filter.composite.list <object_1|class_1,...,object_n|class_n>

A comma separated list of the class names of the filters to be used. The specified filters will be applied sequentially in the given order.

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.FirstNEigenPairFilter
-pca.filter.n <int>

The number of strong eigenvectors: n eigenvectors with the n highesteigenvalues are marked as strong eigenvectors.

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.LimitEigenPairFilter
-pca.filter.absolute <|true|false>

Flag to mark delta as an absolute value.

Default: false

-pca.filter.delta <double>

The threshold for strong Eigenvalues. If not otherwise specified, delta is a relative value w.r.t. the (absolute) highest Eigenvalues and has to be a double between 0 and 1. To mark delta as an absolute value, use the option -pca.filter.absolute.

Default: 0.01

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredRunner
-pca.covariance <class|object>

Class used to compute the covariance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.CovarianceMatrixBuilder

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.StandardCovarianceMatrixBuilder

Known implementations:

-pca.filter <class|object>

Filter class to determine the strong and weak eigenvectors.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPairFilter

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PercentageEigenPairFilter

Known implementations:

-pca.big <double>

A constant big value to reset high eigenvalues.

Default: 1.0

-pca.small <double>

A constant small value to reset low eigenvalues.

Default: 0.0

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCARunner
-pca.covariance <class|object>

Class used to compute the covariance matrix.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.CovarianceMatrixBuilder

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.StandardCovarianceMatrixBuilder

Known implementations:

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PercentageEigenPairFilter
-pca.filter.alpha <double>

The share (0.0 to 1.0) of variance that needs to be explained by the 'strong' eigenvectors.The filter class will choose the number of strong eigenvectors by this share.

Default: 0.85

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.ProgressiveEigenPairFilter
-pca.filter.progressivealpha <double>

The share (0.0 to 1.0) of variance that needs to be explained by the 'strong' eigenvectors.The filter class will choose the number of strong eigenvectors by this share.

Default: 0.5

-pca.filter.weakalpha <double>

The minimum strength of the statistically expected variance (1/n) share an eigenvector needs to have to be considered 'strong'.

Default: 0.95

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.RelativeEigenPairFilter
-pca.filter.relativealpha <double>

The sensitivity niveau for weak eigenvectors: An eigenvector which is at less than the given share of the statistical average variance is considered weak.

Default: 1.1

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.SignificantEigenPairFilter
-pca.filter.weakalpha <double>

The minimum strength of the statistically expected variance (1/n) share an eigenvector needs to have to be considered 'strong'.

Default: 0.0

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.WeakEigenPairFilter
-pca.filter.weakalpha <double>

The minimum strength of the statistically expected variance (1/n) share an eigenvector needs to have to be considered 'strong'.

Default: 0.95

de.lmu.ifi.dbs.elki.math.linearalgebra.pca.WeightedCovarianceMatrixBuilder
-pca.weight <class|object>

Weight function to use in weighted PCA.

Class Restriction: implements de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.WeightFunction

Default: de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ConstantWeight

Known implementations:

de.lmu.ifi.dbs.elki.result.KMLOutputHandler
-out <file>

Filename the KMZ file (compressed KML) is written to.

-kml.scaling <class|object>

Additional scaling function for KML colorization.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierScalingFunction

Default: de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling

Known implementations:

-kml.compat <|true|false>

Use simpler KML objects, compatibility mode.

Default: false

-kml.autoopen <|true|false>

Automatically open the result file.

Default: false

de.lmu.ifi.dbs.elki.result.ResultWriter
-out <file>

Directory name (or name of an existing file) to write the obtained results in. If this parameter is omitted, per default the output will sequentially be given to STDOUT.

-out.gzip <|true|false>

Enable gzip compression of output files.

Default: false

-out.silentoverwrite <|true|false>

Silently overwrite output files.

Default: false

de.lmu.ifi.dbs.elki.utilities.referencepoints.AxisBasedReferencePoints
-axisref.scale <double>

Scale the data space extension by the given factor.

Default: 1.0

de.lmu.ifi.dbs.elki.utilities.referencepoints.GridBasedReferencePoints
-grid.size <int>

The number of partitions in each dimension. Points will be placed on the edges of the grid, except for a grid size of 0, where only the mean is generated as reference point.

Default: 1

-grid.scale <double>

Scale the grid by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

de.lmu.ifi.dbs.elki.utilities.referencepoints.RandomGeneratedReferencePoints
-generate.n <int>

The number of reference points to be generated.

-generate.scale <double>

Scale the grid by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

de.lmu.ifi.dbs.elki.utilities.referencepoints.RandomSampleReferencePoints
-sample.n <int>

The number of samples to draw.

de.lmu.ifi.dbs.elki.utilities.referencepoints.StarBasedReferencePoints
-star.nocenter <|true|false>

Do not use the center as extra reference point.

Default: false

-star.scale <double>

Scale the reference points by the given factor. This can be used to obtain reference points outside the used data space.

Default: 1.0

de.lmu.ifi.dbs.elki.utilities.scaling.ClipScaling
-clipscale.min <double>

Minimum value to allow.

-clipscale.max <double>

Maximum value to allow.

de.lmu.ifi.dbs.elki.utilities.scaling.GammaScaling
-scaling.gamma <double>

Gamma value for scaling.

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.MinusLogStandardDeviationScaling
-stddevscale.mean <double>

Fixed mean to use in standard deviation scaling.

-stddevscale.lambda <double>

Significance level to use for error function.

Default: 3.0

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
-gammascale.normalize <|true|false>

Regularize scores before using Gamma scaling.

Default: false

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling
-linearscale.min <double>

Fixed minimum to use in lienar scaling.

-linearscale.max <double>

Fixed maximum to use in linear scaling.

-linearscale.usemean <|true|false>

Use the mean as minimum for scaling.

Default: false

-linearscale.ignorezero <|true|false>

Ignore zero entries when computing the minimum and maximum.

Default: false

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierSqrtScaling
-sqrtscale.min <double>

Fixed minimum to use in sqrt scaling.

-sqrtscale.max <double>

Fixed maximum to use in sqrt scaling.

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.SqrtStandardDeviationScaling
-sqrtstddevscale.min <double>

Fixed minimum to use in sqrt scaling.

-sqrtstddevscale.mean <double>

Fixed mean to use in standard deviation scaling.

-sqrtstddevscale.lambda <double>

Significance level to use for error function.

Default: 3.0

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.StandardDeviationScaling
-stddevscale.mean <double>

Fixed mean to use in standard deviation scaling.

-stddevscale.lambda <double>

Significance level to use for error function.

Default: 3.0

de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
-topk.k <int>

Number of outliers to keep.

-topk.binary <|true|false>

Make the top k a binary scaling.

Default: false

de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer
-visualizer.stylesheet <string>

Style properties file to use

Default: default

-vis.hide <pattern>

Visualizers to not show by default. Use 'none' to not hide any by default.

Default: ^experimentalcode\..*

de.lmu.ifi.dbs.elki.visualization.gui.ResultVisualizer
-vis.window.title <string>

Title to use for visualization window.

de.lmu.ifi.dbs.elki.visualization.projector.HistogramFactory
-vis.maxdim <int>

Maximum number of dimensions to display.

Default: 10

de.lmu.ifi.dbs.elki.visualization.projector.ScatterPlotFactory
-vis.maxdim <int>

Maximum number of dimensions to display.

Default: 10

de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d.P1DHistogramVisualizer$Factory
-projhistogram.curves <|true|false>

Use curves instead of the stacked histogram style.

Default: false

-projhistogram.bins <int>

Number of bins in the distribution histogram

Default: 50

de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.BubbleVisualization$Factory
-bubble.fill <|true|false>

Half-transparent filling of bubbles.

Default: false

-bubble.scaling <class|object>

Additional scaling function for bubbles.

Class Restriction: implements de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierScalingFunction

Known implementations:

de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.SelectionCubeVisualization$Factory
-selectionrange.nofill <|true|false>

Use wireframe style for selection ranges.

Default: false

de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.TooltipScoreVisualization$Factory
-tooltip.digits <int>

Number of digits to show (e.g. when visualizing outlier scores)

Default: 4

de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.TreeMBRVisualization$Factory
-index.fill <|true|false>

Partially transparent filling of index pages.

Default: false

de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.TreeSphereVisualization$Factory
-index.fill <|true|false>

Partially transparent filling of index pages.

Default: false

de.lmu.ifi.dbs.elki.workflow.AlgorithmStep
-algorithm <object_1|class_1,...,object_n|class_n>

Algorithm to run.

de.lmu.ifi.dbs.elki.workflow.EvaluationStep
-evaluator <object_1|class_1,...,object_n|class_n>

Class to evaluate the results with.

de.lmu.ifi.dbs.elki.workflow.InputStep
-db <class|object>

Database class.

Class Restriction: implements de.lmu.ifi.dbs.elki.database.Database

Default: de.lmu.ifi.dbs.elki.database.StaticArrayDatabase

Known implementations:

de.lmu.ifi.dbs.elki.workflow.LoggingStep
-verbose <|true|false>

Enable verbose messages.

Default: false

-enableDebug <string>

Parameter to enable debugging for particular packages.

de.lmu.ifi.dbs.elki.workflow.OutputStep
-resulthandler <object_1|class_1,...,object_n|class_n>

Result handler class.