Uses of Interface
de.lmu.ifi.dbs.elki.database.Database

Packages that use Database
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.meta Meta outlier detection algorithms: external scores, score rescaling. 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers. 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application.cache Utility applications for the persistence layer such as distance cache builders. 
de.lmu.ifi.dbs.elki.application.jsmap JavaScript based map client - server architecture. 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.database.relation Relations, materialized and virtual (views). 
de.lmu.ifi.dbs.elki.evaluation.histogram Functionality for the evaluation of algorithms using histograms. 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.result.optics Result classes for OPTICS. 
de.lmu.ifi.dbs.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...) 
de.lmu.ifi.dbs.elki.utilities Utility and helper classes - commonly used data structures, output formatting, exceptions, ... 
de.lmu.ifi.dbs.elki.visualization Visualization package of ELKI. 
de.lmu.ifi.dbs.elki.visualization.gui Package to provide a visualization GUI. 
de.lmu.ifi.dbs.elki.workflow Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM 
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm
 

Methods in de.lmu.ifi.dbs.elki.algorithm with parameters of type Database
 Result NullAlgorithm.run(Database database)
           
 R AbstractAlgorithm.run(Database database)
           
 Result Algorithm.run(Database database)
          Runs the algorithm.
 AprioriResult APRIORI.run(Database database, Relation<BitVector> relation)
          Performs the APRIORI algorithm on the given database.
 Result DummyAlgorithm.run(Database database, Relation<O> relation)
          Run the algorithm.
 KNNDistanceOrderResult<D> KNNDistanceOrder.run(Database database, Relation<O> relation)
          Provides an order of the kNN-distances for all objects within the specified database.
 CollectionResult<CTriple<DBID,DBID,Double>> MaterializeDistances.run(Database database, Relation<O> relation)
          Iterates over all points in the database.
 DataStore<KNNList<D>> KNNJoin.run(Database database, Relation<V> relation)
          Joins in the given spatial database to each object its k-nearest neighbors.
 CorrelationAnalysisSolution<V> DependencyDerivator.run(Database database, Relation<V> relation)
          Computes quantitatively linear dependencies among the attributes of the given database based on a linear correlation PCA.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type Database
protected  void DBSCAN.expandCluster(Database database, RangeQuery<O,D> rangeQuery, DBID startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
          DBSCAN-function expandCluster.
protected  void OPTICS.expandClusterOrder(ClusterOrderResult<D> clusterOrder, Database database, RangeQuery<O,D> rangeQuery, DBID objectID, D epsilon, FiniteProgress progress)
          OPTICS-function expandClusterOrder.
protected  void OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder, Database database, RangeQuery<O,DoubleDistance> rangeQuery, DBID objectID, DoubleDistance epsilon, FiniteProgress progress)
          OPTICS-function expandClusterOrder.
protected  DistanceQuery<V,DoubleDistance> AbstractProjectedClustering.getDistanceQuery(Database database)
          Returns the distance function.
 C ClusteringAlgorithm.run(Database database)
           
 ClusterOrderResult<D> OPTICSTypeAlgorithm.run(Database database)
           
 Clustering<OPTICSModel> OPTICSXi.run(Database database, Relation<?> relation)
           
 ClusterOrderResult<D> DeLiClu.run(Database database, Relation<NV> relation)
           
 ClusterOrderResult<D> OPTICS.run(Database database, Relation<O> relation)
          Run OPTICS on the database.
 Result SLINK.run(Database database, Relation<O> relation)
          Performs the SLINK algorithm on the given database.
 Clustering<Model> SNNClustering.run(Database database, Relation<O> relation)
          Perform SNN clustering
 Clustering<Model> DBSCAN.run(Database database, Relation<O> relation)
          Performs the DBSCAN algorithm on the given database.
 Clustering<MeanModel<V>> KMeans.run(Database database, Relation<V> relation)
          Run k-means
 Clustering<Model> AbstractProjectedDBSCAN.run(Database database, Relation<V> relation)
           
 Clustering<EMModel<V>> EM.run(Database database, Relation<V> relation)
          Performs the EM clustering algorithm on the given database.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return Database
private  Database CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation, CASHInterval interval)
          Builds a database for the derivator consisting of the ids in the specified interval.
private  Database CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)
          Builds a database for the derivator consisting of the ids in the specified interval.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Database
 Clustering<Model> CASH.run(Database database, Relation<ParameterizationFunction> relation)
          Run CASH on the relation.
 Clustering<Model> ORCLUS.run(Database database, Relation<V> relation)
          Performs the ORCLUS algorithm on the given database.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type Database
 Clustering<SubspaceModel<V>> DiSH.run(Database database, Relation<V> relation)
          Performs the DiSH algorithm on the given database.
 Clustering<Model> PROCLUS.run(Database database, Relation<V> relation)
          Performs the PROCLUS algorithm on the given database.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial with parameters of type Database
 Clustering<Model> ByLabelClustering.run(Database database)
           
 Clustering<Model> ByLabelHierarchicalClustering.run(Database database)
           
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return Database
 Database SOD.SODProxyScoreResult.getDatabase()
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type Database
protected  DataStore<Double> DBOutlierDetection.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D neighborhoodSize)
           
protected abstract  DataStore<Double> AbstractDBOutlier.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D d)
          computes an outlier score for each object of the database.
protected  DataStore<Double> DBOutlierScore.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D d)
           
protected  Pair<KNNQuery<O,D>,KNNQuery<O,D>> LoOP.getKNNQueries(Database database, Relation<O> relation, StepProgress stepprog)
          Get the kNN queries for the algorithm.
 OutlierResult INFLO.run(Database database)
           
 OutlierResult LOCI.run(Database database)
          Runs the algorithm in the timed evaluation part.
 OutlierResult OutlierAlgorithm.run(Database database)
           
 OutlierResult KNNOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult LoOP.run(Database database, Relation<O> relation)
          Performs the LoOP algorithm on the given database.
 OutlierResult AbstractDBOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult OPTICSOF.run(Database database, Relation<O> relation)
          Perform OPTICS-based outlier detection.
 OutlierResult LDOF.run(Database database, Relation<O> relation)
           
 OutlierResult KNNWeightOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult ABOD.run(Database database, Relation<V> relation)
          Run ABOD on the data set
 OutlierResult EMOutlier.run(Database database, Relation<V> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult AggarwalYuEvolutionary.run(Database database, Relation<V> relation)
          Performs the evolutionary algorithm on the given database.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with parameters of type Database
 OutlierResult RescaleMetaOutlierAlgorithm.run(Database database)
           
 OutlierResult ExternalDoubleOutlierScore.run(Database database, Relation<?> relation)
          Run the algorithm.
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with parameters of type Database
 OutlierResult TrimmedMeanApproach.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Run the algorithm
 OutlierResult CTLuZTestOutlier.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult SLOM.run(Database database, Relation<N> spatial, Relation<O> relation)
           
 OutlierResult SOF.run(Database database, Relation<N> spatial, Relation<O> relation)
          The main run method
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial with parameters of type Database
 OutlierResult ByLabelOutlier.run(Database database)
           
 

Uses of Database in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Methods in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type Database
 HistogramResult<DoubleVector> DistanceStatisticsWithClasses.run(Database database)
          Iterates over all points in the database.
 HistogramResult<DoubleVector> EvaluateRankingQuality.run(Database database)
          Run the algorithm.
 HistogramResult<DoubleVector> RankingQualityHistogram.run(Database database, Relation<O> relation)
           
 

Uses of Database in de.lmu.ifi.dbs.elki.application.cache
 

Fields in de.lmu.ifi.dbs.elki.application.cache declared as Database
private  Database CacheFloatDistanceInOnDiskMatrix.database
          Holds the database connection to have the algorithm run with.
private  Database CacheFloatDistanceInOnDiskMatrix.Parameterizer.database
          Holds the database connection to have the algorithm run with.
private  Database CacheDoubleDistanceInOnDiskMatrix.database
          Holds the database connection to have the algorithm run with.
private  Database CacheDoubleDistanceInOnDiskMatrix.Parameterizer.database
          Holds the database connection to have the algorithm run with.
 

Constructors in de.lmu.ifi.dbs.elki.application.cache with parameters of type Database
CacheDoubleDistanceInOnDiskMatrix(boolean verbose, Database database, DistanceFunction<O,D> distance, File out)
          Constructor.
CacheFloatDistanceInOnDiskMatrix(boolean verbose, Database database, DistanceFunction<O,D> distance, File out)
          Constructor.
 

Uses of Database in de.lmu.ifi.dbs.elki.application.jsmap
 

Fields in de.lmu.ifi.dbs.elki.application.jsmap declared as Database
private  Database JSONWebServer.db
          The database we use for obtaining object bundles
 

Uses of Database in de.lmu.ifi.dbs.elki.application.visualization
 

Fields in de.lmu.ifi.dbs.elki.application.visualization declared as Database
private  Database KNNExplorer.database
          Holds the database connection to have the algorithm run with.
protected  Database KNNExplorer.Parameterizer.database
           
private  Database KNNExplorer.ExplorerWindow.db
           
 

Methods in de.lmu.ifi.dbs.elki.application.visualization with parameters of type Database
 void KNNExplorer.ExplorerWindow.run(Database db, DistanceQuery<O,D> distanceQuery)
          Process the given Database and distance function.
 

Constructors in de.lmu.ifi.dbs.elki.application.visualization with parameters of type Database
KNNExplorer(boolean verbose, Database database, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of Database in de.lmu.ifi.dbs.elki.database
 

Subinterfaces of Database in de.lmu.ifi.dbs.elki.database
 interface UpdatableDatabase
          Database API with updates.
 

Classes in de.lmu.ifi.dbs.elki.database that implement Database
 class AbstractDatabase
          Abstract base class for database API implementations.
 class HashmapDatabase
          Provides a mapping for associations based on a Hashtable and functions to get the next usable ID for insertion, making IDs reusable after deletion of the entry.
 class ProxyDatabase
          A proxy database to use e.g. for projections and partitions.
 class StaticArrayDatabase
          This database class uses array-based storage and thus does not allow for dynamic insert, delete and update operations.
 

Methods in de.lmu.ifi.dbs.elki.database with parameters of type Database
static
<O,D extends Distance<D>>
DistanceQuery<O,D>
QueryUtil.getDistanceQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a distance query for a given distance function, automatically choosing a relation.
static
<O,D extends Distance<D>>
KNNQuery<O,D>
QueryUtil.getKNNQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a KNN query object for the given distance function.
static
<O,D extends Distance<D>>
RangeQuery<O,D>
QueryUtil.getRangeQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a range query object for the given distance function.
static
<O,D extends Distance<D>>
SimilarityQuery<O,D>
QueryUtil.getSimilarityQuery(Database database, SimilarityFunction<? super O,D> similarityFunction, Object... hints)
          Get a similarity query, automatically choosing a relation.
 

Constructors in de.lmu.ifi.dbs.elki.database with parameters of type Database
ProxyDatabase(DBIDs ids, Database database)
          Constructor, proxying all relations of an existing database.
 

Uses of Database in de.lmu.ifi.dbs.elki.database.relation
 

Fields in de.lmu.ifi.dbs.elki.database.relation declared as Database
private  Database ProxyView.database
          Our database
private  Database MaterializedRelation.database
          Our database
private  Database DBIDView.database
          The database
 

Methods in de.lmu.ifi.dbs.elki.database.relation that return Database
 Database ConvertToStringView.getDatabase()
           
 Database ProxyView.getDatabase()
           
 Database MaterializedRelation.getDatabase()
           
 Database DBIDView.getDatabase()
           
 Database Relation.getDatabase()
          Get the associated database.
 

Methods in de.lmu.ifi.dbs.elki.database.relation with parameters of type Database
static
<O> ProxyView<O>
ProxyView.wrap(Database database, DBIDs idview, Relation<O> inner)
          Constructor-like static method.
 

Constructors in de.lmu.ifi.dbs.elki.database.relation with parameters of type Database
DBIDView(Database database, DBIDs ids)
          Constructor.
MaterializedRelation(Database database, SimpleTypeInformation<O> type, DBIDs ids)
          Constructor.
MaterializedRelation(Database database, SimpleTypeInformation<O> type, DBIDs ids, String name)
          Constructor.
MaterializedRelation(Database database, SimpleTypeInformation<O> type, DBIDs ids, String name, DataStore<O> content)
          Constructor.
ProxyView(Database database, DBIDs idview, Relation<O> inner)
          Constructor.
 

Uses of Database in de.lmu.ifi.dbs.elki.evaluation.histogram
 

Methods in de.lmu.ifi.dbs.elki.evaluation.histogram with parameters of type Database
 HistogramResult<DoubleVector> ComputeOutlierHistogram.evaluateOutlierResult(Database database, OutlierResult or)
          Evaluate a single outlier result as histogram.
 

Uses of Database in de.lmu.ifi.dbs.elki.result
 

Methods in de.lmu.ifi.dbs.elki.result that return Database
static Database ResultUtil.findDatabase(Result baseResult)
          Find the first database result in the tree.
 

Methods in de.lmu.ifi.dbs.elki.result with parameters of type Database
static
<O> void
ResultUtil.ensureClusteringResult(Database db, Result result)
          Ensure that the result contains at least one Clustering.
static void ResultUtil.ensureSelectionResult(Database db, Result result)
          Ensure that there also is a selection container object.
private  void KMLOutputHandler.writeKMLData(XMLStreamWriter out, OutlierResult outlierResult, Database database)
           
 

Uses of Database in de.lmu.ifi.dbs.elki.result.optics
 

Methods in de.lmu.ifi.dbs.elki.result.optics that return Database
 Database ClusterOrderResult.ReachabilityDistanceAdapter.getDatabase()
           
 Database ClusterOrderResult.PredecessorAdapter.getDatabase()
           
 

Uses of Database in de.lmu.ifi.dbs.elki.result.textwriter
 

Methods in de.lmu.ifi.dbs.elki.result.textwriter with parameters of type Database
 void TextWriter.output(Database db, Result r, StreamFactory streamOpener)
          Stream output.
private  void TextWriter.printObject(TextWriterStream out, Database db, DBID objID, List<Relation<?>> ra)
           
private  void TextWriter.writeClusterResult(Database db, StreamFactory streamOpener, Cluster<?> clus, List<Relation<?>> ra, NamingScheme naming, List<SettingsResult> sr)
           
private  void TextWriter.writeOrderingResult(Database db, StreamFactory streamOpener, OrderingResult or, List<Relation<?>> ra, List<SettingsResult> sr)
           
 

Uses of Database in de.lmu.ifi.dbs.elki.utilities
 

Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type Database
static SortedSet<ClassLabel> DatabaseUtil.getClassLabels(Database database)
          Retrieves all class labels within the database.
static ArrayModifiableDBIDs DatabaseUtil.getObjectsByLabelMatch(Database database, Pattern name_pattern)
          Find object by matching their labels.
static Relation<String> DatabaseUtil.guessLabelRepresentation(Database database)
          Guess a potentially label-like representation.
static Relation<String> DatabaseUtil.guessObjectLabelRepresentation(Database database)
          Guess a potentially object label-like representation.
 

Uses of Database in de.lmu.ifi.dbs.elki.visualization
 

Methods in de.lmu.ifi.dbs.elki.visualization with parameters of type Database
static String VisualizerParameterizer.getTitle(Database db, Result result)
          Try to automatically generate a title for this.
 

Uses of Database in de.lmu.ifi.dbs.elki.visualization.gui
 

Fields in de.lmu.ifi.dbs.elki.visualization.gui declared as Database
(package private)  Database SelectionTableWindow.database
          The database we use
 

Uses of Database in de.lmu.ifi.dbs.elki.workflow
 

Fields in de.lmu.ifi.dbs.elki.workflow declared as Database
private  Database EvaluationStep.Evaluation.database
          Database
private  Database InputStep.database
          Holds the database to have the algorithms run with.
protected  Database InputStep.Parameterizer.database
          Holds the database to have the algorithms run on.
 

Methods in de.lmu.ifi.dbs.elki.workflow that return Database
 Database InputStep.getDatabase()
          Get the database to use.
 

Methods in de.lmu.ifi.dbs.elki.workflow with parameters of type Database
 HierarchicalResult AlgorithmStep.runAlgorithms(Database database)
          Run algorithms.
 void EvaluationStep.runEvaluators(HierarchicalResult r, Database db)
           
 

Constructors in de.lmu.ifi.dbs.elki.workflow with parameters of type Database
EvaluationStep.Evaluation(Database database, List<Evaluator> evaluators)
          Constructor.
InputStep(Database database)
          Constructor.
 


Release 0.4.0 (2011-09-20_1324)