| 
 |   | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.evaluation.histogram.ComputeOutlierHistogram
public class ComputeOutlierHistogram

Compute a Histogram to evaluate a ranking algorithm.
 
 The parameter -hist.positive specifies the class label of "positive"
 hits.
| Nested Class Summary | |
|---|---|
| static class | ComputeOutlierHistogram.ParameterizerParameterization class. | 
| Field Summary | |
|---|---|
| private  int | binsNumber of bins | 
| static OptionID | BINS_IDnumber of bins for the histogram Default value: EuclideanDistanceFunctionKey:-comphist.bins | 
| protected static Logging | loggerLogger for debugging. | 
| static OptionID | POSITIVE_CLASS_NAME_IDThe object pattern to identify positive classes Key: -comphist.positive | 
| private  Pattern | positiveClassNameStores the "positive" class. | 
| private  ScalingFunction | scalingScaling function to use | 
| static OptionID | SCALING_IDParameter to specify a scaling function to use. | 
| private  boolean | splitfreqFlag to make split frequencies | 
| static OptionID | SPLITFREQ_IDFlag to count frequencies of outliers and non-outliers separately Key: -histogram.splitfreq | 
| Constructor Summary | |
|---|---|
| ComputeOutlierHistogram(Pattern positive_class_name,
                        int bins,
                        ScalingFunction scaling,
                        boolean splitfreq)Constructor. | |
| Method Summary | |
|---|---|
|  HistogramResult<DoubleVector> | evaluateOutlierResult(Database database,
                      OutlierResult or)Evaluate a single outlier result as histogram. | 
|  void | processNewResult(HierarchicalResult baseResult,
                 Result result)Process a result. | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait | 
| Field Detail | 
|---|
protected static final Logging logger
public static final OptionID POSITIVE_CLASS_NAME_ID
 Key: -comphist.positive
 
public static final OptionID BINS_ID
 Default value: EuclideanDistanceFunction
 
 Key: -comphist.bins
 
public static final OptionID SCALING_ID
 Key: -comphist.scaling
 
public static final OptionID SPLITFREQ_ID
 Key: -histogram.splitfreq
 
private Pattern positiveClassName
private int bins
private ScalingFunction scaling
private boolean splitfreq
| Constructor Detail | 
|---|
public ComputeOutlierHistogram(Pattern positive_class_name,
                               int bins,
                               ScalingFunction scaling,
                               boolean splitfreq)
positive_class_name - Class namebins - Binsscaling - Scalingsplitfreq - Scale inlier and outlier frequencies independently| Method Detail | 
|---|
public HistogramResult<DoubleVector> evaluateOutlierResult(Database database,
                                                           OutlierResult or)
database - Database to processor - Outlier result
public void processNewResult(HierarchicalResult baseResult,
                             Result result)
ResultProcessor
processNewResult in interface ResultProcessorbaseResult - The base of the result tree.result - Newly added result subtree.| 
 | 
 | |||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||