de.lmu.ifi.dbs.elki.evaluation.histogram
Class ComputeOutlierHistogram

java.lang.Object
  extended by de.lmu.ifi.dbs.elki.evaluation.histogram.ComputeOutlierHistogram
All Implemented Interfaces:
Evaluator, ResultProcessor

public class ComputeOutlierHistogram
extends Object
implements Evaluator

Compute a Histogram to evaluate a ranking algorithm. The parameter -hist.positive specifies the class label of "positive" hits.


Nested Class Summary
static class ComputeOutlierHistogram.Parameterizer
          Parameterization class.
 
Field Summary
private  int bins
          Number of bins
static OptionID BINS_ID
          number of bins for the histogram Default value: EuclideanDistanceFunction Key: -comphist.bins
protected static Logging logger
          Logger for debugging.
static OptionID POSITIVE_CLASS_NAME_ID
          The object pattern to identify positive classes Key: -comphist.positive
private  Pattern positiveClassName
          Stores the "positive" class.
private  ScalingFunction scaling
          Scaling function to use
static OptionID SCALING_ID
          Parameter to specify a scaling function to use.
private  boolean splitfreq
          Flag to make split frequencies
static OptionID SPLITFREQ_ID
          Flag to count frequencies of outliers and non-outliers separately Key: -histogram.splitfreq
 
Constructor Summary
ComputeOutlierHistogram(Pattern positive_class_name, int bins, ScalingFunction scaling, boolean splitfreq)
          Constructor.
 
Method Summary
 HistogramResult<DoubleVector> evaluateOutlierResult(Database database, OutlierResult or)
          Evaluate a single outlier result as histogram.
 void processNewResult(HierarchicalResult baseResult, Result result)
          Process a result.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

logger

protected static final Logging logger
Logger for debugging.


POSITIVE_CLASS_NAME_ID

public static final OptionID POSITIVE_CLASS_NAME_ID
The object pattern to identify positive classes

Key: -comphist.positive


BINS_ID

public static final OptionID BINS_ID
number of bins for the histogram

Default value: EuclideanDistanceFunction

Key: -comphist.bins


SCALING_ID

public static final OptionID SCALING_ID
Parameter to specify a scaling function to use.

Key: -comphist.scaling


SPLITFREQ_ID

public static final OptionID SPLITFREQ_ID
Flag to count frequencies of outliers and non-outliers separately

Key: -histogram.splitfreq


positiveClassName

private Pattern positiveClassName
Stores the "positive" class.


bins

private int bins
Number of bins


scaling

private ScalingFunction scaling
Scaling function to use


splitfreq

private boolean splitfreq
Flag to make split frequencies

Constructor Detail

ComputeOutlierHistogram

public ComputeOutlierHistogram(Pattern positive_class_name,
                               int bins,
                               ScalingFunction scaling,
                               boolean splitfreq)
Constructor.

Parameters:
positive_class_name - Class name
bins - Bins
scaling - Scaling
splitfreq - Scale inlier and outlier frequencies independently
Method Detail

evaluateOutlierResult

public HistogramResult<DoubleVector> evaluateOutlierResult(Database database,
                                                           OutlierResult or)
Evaluate a single outlier result as histogram.

Parameters:
database - Database to process
or - Outlier result
Returns:
Result

processNewResult

public void processNewResult(HierarchicalResult baseResult,
                             Result result)
Description copied from interface: ResultProcessor
Process a result.

Specified by:
processNewResult in interface ResultProcessor
Parameters:
baseResult - The base of the result tree.
result - Newly added result subtree.

Release 0.4.0 (2011-09-20_1324)