|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm declared as DistanceFunction | |
---|---|
private DistanceFunction<? super O,D> |
AbstractDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by AbstractDistanceBasedAlgorithm.DISTANCE_FUNCTION_ID . |
protected DistanceFunction<O,D> |
AbstractDistanceBasedAlgorithm.Parameterizer.distanceFunction
|
Methods in de.lmu.ifi.dbs.elki.algorithm with type parameters of type DistanceFunction | ||
---|---|---|
static
|
AbstractAlgorithm.makeParameterDistanceFunction(Class<?> defaultDistanceFunction,
Class<?> restriction)
Make a default distance function configuration option |
Methods in de.lmu.ifi.dbs.elki.algorithm that return DistanceFunction | |
---|---|
DistanceFunction<? super O,D> |
AbstractDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction. |
Constructors in de.lmu.ifi.dbs.elki.algorithm with parameters of type DistanceFunction | |
---|---|
AbstractDistanceBasedAlgorithm(DistanceFunction<? super O,D> distanceFunction)
Constructor. |
|
KNNDistanceOrder(DistanceFunction<O,D> distanceFunction,
int k,
double percentage)
Constructor. |
|
KNNJoin(DistanceFunction<? super V,D> distanceFunction,
int k)
Constructor. |
|
MaterializeDistances(DistanceFunction<? super O,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering declared as DistanceFunction | |
---|---|
private DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.distanceFunction
The euclidean distance function. |
protected DistanceFunction<V,D> |
AbstractProjectedDBSCAN.Parameterizer.innerdist
|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return DistanceFunction | |
---|---|
protected DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceFunction | |
---|---|
protected void |
AbstractProjectedDBSCAN.Parameterizer.configEpsilon(Parameterization config,
DistanceFunction<V,D> innerdist)
|
protected void |
AbstractProjectedDBSCAN.Parameterizer.configOuterDistance(Parameterization config,
D epsilon,
int minpts,
Class<?> preprocessorClass,
DistanceFunction<V,D> innerdist)
|
Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceFunction | |
---|---|
DBSCAN(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor with parameters. |
|
DeLiClu(DistanceFunction<? super NV,D> distanceFunction,
int minpts)
Constructor. |
|
OPTICS(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor. |
|
SLINK(DistanceFunction<? super O,D> distanceFunction,
Integer minclusters)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as DistanceFunction | |
---|---|
protected DistanceFunction<? super O,D> |
LoOP.comparisonDistanceFunction
Preprocessor Step 2 |
protected DistanceFunction<O,D> |
LoOP.Parameterizer.comparisonDistanceFunction
Preprocessor Step 2 |
private DistanceFunction<V,D> |
ReferenceBasedOutlierDetection.distanceFunction
Distance function to use. |
protected DistanceFunction<O,D> |
OnlineLOF.Parameterizer.neighborhoodDistanceFunction
Neighborhood distance function. |
protected DistanceFunction<? super O,D> |
LOF.neighborhoodDistanceFunction
Neighborhood distance function. |
protected DistanceFunction<O,D> |
LOF.Parameterizer.neighborhoodDistanceFunction
Neighborhood distance function. |
protected DistanceFunction<O,D> |
OnlineLOF.Parameterizer.reachabilityDistanceFunction
Reachability distance function. |
protected DistanceFunction<? super O,D> |
LoOP.reachabilityDistanceFunction
Preprocessor Step 1 |
protected DistanceFunction<O,D> |
LoOP.Parameterizer.reachabilityDistanceFunction
Preprocessor Step 1 |
protected DistanceFunction<? super O,D> |
LOF.reachabilityDistanceFunction
Reachability distance function. |
protected DistanceFunction<O,D> |
LOF.Parameterizer.reachabilityDistanceFunction
Reachability distance function. |
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceFunction | |
---|---|
protected void |
AbstractDBOutlier.Parameterizer.configD(Parameterization config,
DistanceFunction<?,D> distanceFunction)
Grab the 'd' configuration option. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceFunction | |
---|---|
ABOD(int k,
int sampleSize,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
|
ABOD(int k,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
|
AbstractDBOutlier(DistanceFunction<? super O,D> distanceFunction,
D d)
Constructor with actual parameters. |
|
DBOutlierDetection(DistanceFunction<O,D> distanceFunction,
D d,
double p)
Constructor with actual parameters. |
|
DBOutlierScore(DistanceFunction<O,D> distanceFunction,
D d)
Constructor with parameters. |
|
INFLO(DistanceFunction<? super O,D> distanceFunction,
double m,
int k)
Constructor with parameters. |
|
KNNOutlier(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor for a single kNN query. |
|
KNNWeightOutlier(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor with parameters. |
|
LDOF(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor. |
|
LOCI(DistanceFunction<? super O,D> distanceFunction,
D rmax,
int nmin,
double alpha)
Constructor. |
|
LOF(int k,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor. |
|
LOF(int k,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor. |
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O,D> reachabilityDistanceFunction,
DistanceFunction<? super O,D> comparisonDistanceFunction,
double lambda)
Constructor with parameters. |
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O,D> reachabilityDistanceFunction,
DistanceFunction<? super O,D> comparisonDistanceFunction,
double lambda)
Constructor with parameters. |
|
OnlineLOF(int k,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor. |
|
OnlineLOF(int k,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor. |
|
OPTICSOF(DistanceFunction<? super O,D> distanceFunction,
int minpts)
Constructor with parameters. |
|
ReferenceBasedOutlierDetection(int k,
DistanceFunction<V,D> distanceFunction,
ReferencePointsHeuristic<V> refp)
Constructor with parameters. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial declared as DistanceFunction | |
---|---|
private DistanceFunction<O,D> |
AbstractDistanceBasedSpatialOutlier.nonSpatialDistanceFunction
The distance function to use |
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial that return DistanceFunction | |
---|---|
protected DistanceFunction<O,D> |
AbstractDistanceBasedSpatialOutlier.getNonSpatialDistanceFunction()
Get the non-spatial relation |
Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with parameters of type DistanceFunction | |
---|---|
AbstractDistanceBasedSpatialOutlier(NeighborSetPredicate.Factory<N> npredf,
DistanceFunction<O,D> nonSpatialDistanceFunction)
Constructor. |
|
CTLuGLSBackwardSearchAlgorithm(DistanceFunction<V,D> distanceFunction,
int k,
double alpha)
Constructor. |
|
CTLuRandomWalkEC(DistanceFunction<N,D> distanceFunction,
double alpha,
double c,
int k)
Constructor |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood declared as DistanceFunction | |
---|---|
private DistanceFunction<? super O,D> |
PrecomputedKNearestNeighborNeighborhood.Factory.distFunc
distance function to use |
(package private) DistanceFunction<? super O,D> |
PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer.distFunc
Distance function |
Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood with parameters of type DistanceFunction | |
---|---|
PrecomputedKNearestNeighborNeighborhood.Factory(int k,
DistanceFunction<? super O,D> distFunc)
Factory Constructor |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.statistics |
---|
Constructors in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type DistanceFunction | |
---|---|
DistanceStatisticsWithClasses(DistanceFunction<? super O,D> distanceFunction,
int numbins,
boolean exact,
boolean sampling)
Constructor. |
|
EvaluateRankingQuality(DistanceFunction<? super V,D> distanceFunction,
int numbins)
Constructor. |
|
RankingQualityHistogram(DistanceFunction<? super O,D> distanceFunction,
int numbins)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.application.cache |
---|
Fields in de.lmu.ifi.dbs.elki.application.cache declared as DistanceFunction | |
---|---|
private DistanceFunction<O,D> |
CacheFloatDistanceInOnDiskMatrix.distance
Distance function that is to be cached. |
private DistanceFunction<O,D> |
CacheFloatDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached. |
private DistanceFunction<O,D> |
CacheDoubleDistanceInOnDiskMatrix.distance
Distance function that is to be cached. |
private DistanceFunction<O,D> |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached. |
Constructors in de.lmu.ifi.dbs.elki.application.cache with parameters of type DistanceFunction | |
---|---|
CacheDoubleDistanceInOnDiskMatrix(boolean verbose,
Database database,
DistanceFunction<O,D> distance,
File out)
Constructor. |
|
CacheFloatDistanceInOnDiskMatrix(boolean verbose,
Database database,
DistanceFunction<O,D> distance,
File out)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.application.visualization |
---|
Fields in de.lmu.ifi.dbs.elki.application.visualization declared as DistanceFunction | |
---|---|
private DistanceFunction<O,D> |
KNNExplorer.distanceFunction
Holds the instance of the distance function specified by KNNExplorer.DISTANCE_FUNCTION_ID . |
protected DistanceFunction<O,D> |
KNNExplorer.Parameterizer.distanceFunction
|
Constructors in de.lmu.ifi.dbs.elki.application.visualization with parameters of type DistanceFunction | |
---|---|
KNNExplorer(boolean verbose,
Database database,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.database |
---|
Methods in de.lmu.ifi.dbs.elki.database with parameters of type DistanceFunction | ||
---|---|---|
static
|
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing a relation. |
|
|
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
|
|
|
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function. |
|
static
|
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function. |
|
static
|
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function. |
|
static
|
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function. |
|
static
|
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function. |
|
static
|
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.database.query.distance |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.distance that return DistanceFunction | |
---|---|
DistanceFunction<? super O,D> |
DistanceQuery.getDistanceFunction()
Get the inner distance function. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.datasource.parser |
---|
Fields in de.lmu.ifi.dbs.elki.datasource.parser declared as DistanceFunction | |
---|---|
private DistanceFunction<?,D> |
NumberDistanceParser.distanceFunction
The distance function. |
protected DistanceFunction<?,D> |
NumberDistanceParser.Parameterizer.distanceFunction
The distance function. |
Constructors in de.lmu.ifi.dbs.elki.datasource.parser with parameters of type DistanceFunction | |
---|---|
NumberDistanceParser(Pattern colSep,
char quoteChar,
DistanceFunction<?,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction with type parameters of type DistanceFunction | |
---|---|
static class |
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
The actual instance bound to a particular database. |
Subinterfaces of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction | |
---|---|
interface |
DBIDDistanceFunction<D extends Distance<?>>
Distance functions valid in a database context only (i.e. for DBIDs) For any "distance" that cannot be computed for arbitrary objects, only those that exist in the database and referenced by their ID. |
interface |
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?,?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors. |
interface |
IndexBasedDistanceFunction<O,D extends Distance<D>>
Distance function relying on an index (such as preprocessed neighborhoods). |
interface |
PrimitiveDistanceFunction<O,D extends Distance<?>>
Primitive distance function that is defined on some kind of object. |
interface |
PrimitiveDoubleDistanceFunction<O>
Interface for distance functions that can provide a raw double value. |
interface |
SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
API for a spatial primitive distance function. |
interface |
SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>
Interface combining spatial primitive distance functions with primitive number distance functions. |
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement DistanceFunction | |
---|---|
class |
AbstractCosineDistanceFunction
Abstract base class for Cosine and ArcCosine distances. |
class |
AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
Abstract super class for distance functions needing a database context. |
class |
AbstractDBIDDistanceFunction<D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. |
class |
AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
Abstract super class for distance functions needing a database index. |
class |
AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. |
class |
AbstractVectorDoubleDistanceFunction
Abstract base class for the most common family of distance functions: defined on number vectors and returning double values. |
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors. |
class |
CosineDistanceFunction
Cosine distance function for feature vectors. |
class |
EuclideanDistanceFunction
Provides the Euclidean distance for FeatureVectors. |
class |
LocallyWeightedDistanceFunction<V extends NumberVector<?,?>>
Provides a locally weighted distance function. |
class |
LPNormDistanceFunction
Provides a LP-Norm for FeatureVectors. |
class |
ManhattanDistanceFunction
Manhattan distance function to compute the Manhattan distance for a pair of FeatureVectors. |
class |
MaximumDistanceFunction
Maximum distance function to compute the Maximum distance for a pair of FeatureVectors. |
class |
MinimumDistanceFunction
Maximum distance function to compute the Minimum distance for a pair of FeatureVectors. |
class |
MinKDistance<O,D extends Distance<D>>
A distance that is at least the distance to the kth nearest neighbor. |
class |
ProxyDistanceFunction<O,D extends Distance<D>>
Distance function to proxy computations to another distance (that probably was run before). |
class |
RandomStableDistanceFunction
This is a dummy distance providing random values (obviously not metrical), useful mostly for unit tests and baseline evaluations: obviously this distance provides no benefit whatsoever. |
class |
SharedNearestNeighborJaccardDistanceFunction<O>
SharedNearestNeighborJaccardDistanceFunction computes the Jaccard coefficient, which is a proper distance metric. |
class |
SquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. |
class |
WeightedDistanceFunction
Provides the Weighted distance for feature vectors. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Euclidean distance function. |
class |
WeightedSquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. |
Fields in de.lmu.ifi.dbs.elki.distance.distancefunction declared as DistanceFunction | |
---|---|
(package private) DistanceFunction<? super O,D> |
AbstractDatabaseDistanceFunction.Instance.parent
Parent distance |
protected F |
AbstractIndexBasedDistanceFunction.Instance.parent
Our parent distance function |
protected DistanceFunction<? super O,D> |
MinKDistance.parentDistance
The distance function to determine the exact distance. |
protected DistanceFunction<? super O,D> |
MinKDistance.Parameterizer.parentDistance
The distance function to determine the exact distance. |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DistanceFunction | ||
---|---|---|
DistanceFunction<? super O,D> |
AbstractDatabaseDistanceFunction.Instance.getDistanceFunction()
|
|
DistanceFunction<? super T,D> |
MinKDistance.Instance.getDistanceFunction()
|
|
static
|
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
Helper function, to resolve any wrapped Proxy Distances |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceFunction | ||
---|---|---|
static
|
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
Helper function, to resolve any wrapped Proxy Distances |
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceFunction | |
---|---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
DistanceFunction<? super O,D> parent)
Constructor. |
|
MinKDistance.Instance(Relation<T> relation,
int k,
DistanceFunction<? super O,D> parentDistance)
Constructor. |
|
MinKDistance(DistanceFunction<? super O,D> parentDistance,
int k)
Full constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement DistanceFunction | |
---|---|
class |
AbstractSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function. |
class |
SimilarityAdapterArccos<O>
Adapter from a normalized similarity function to a distance function using arccos(sim) . |
class |
SimilarityAdapterLinear<O>
Adapter from a normalized similarity function to a distance function using 1 - sim . |
class |
SimilarityAdapterLn<O>
Adapter from a normalized similarity function to a distance function using -log(sim) . |
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type DistanceFunction | |
---|---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterArccos.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLn.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that implement DistanceFunction | |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. |
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and color similarity. |
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and color similarity. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement DistanceFunction | |
---|---|
class |
ERiCDistanceFunction
Provides a distance function for building the hierarchy in the ERiC algorithm. |
class |
PCABasedCorrelationDistanceFunction
Provides the correlation distance for real valued vectors. |
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. |
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. |
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. |
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.external |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.external that implement DistanceFunction | |
---|---|
class |
DiskCacheBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file. |
class |
DiskCacheBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file. |
class |
FileBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file. |
class |
FileBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.geo that implement DistanceFunction | |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. |
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. |
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement DistanceFunction | |
---|---|
class |
AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?,?>>
Provides a distance function that computes the distance (which is a double distance) between feature vectors only in specified dimensions. |
class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
Abstract super class for all preference vector based correlation distance functions. |
class |
DimensionSelectingDistanceFunction
Provides a distance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension. |
class |
DimensionsSelectingEuclideanDistanceFunction
Provides a distance function that computes the Euclidean distance between feature vectors only in specified dimensions. |
class |
DiSHDistanceFunction
Distance function used in the DiSH algorithm. |
class |
HiSCDistanceFunction<V extends NumberVector<?,?>>
Distance function used in the HiSC algorithm. |
class |
SubspaceDistanceFunction
Provides a distance function to determine a kind of correlation distance between two points, which is a pair consisting of the distance between the two subspaces spanned by the strong eigenvectors of the two points and the affine distance between the two subspaces. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries that implement DistanceFunction | |
---|---|
class |
AbstractEditDistanceFunction
Provides the Edit Distance for FeatureVectors. |
class |
DTWDistanceFunction
Provides the Dynamic Time Warping distance for FeatureVectors. |
class |
EDRDistanceFunction
Provides the Edit Distance on Real Sequence distance for FeatureVectors. |
class |
ERPDistanceFunction
Provides the Edit Distance With Real Penalty distance for FeatureVectors. |
class |
LCSSDistanceFunction
Provides the Longest Common Subsequence distance for FeatureVectors. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that implement DistanceFunction | |
---|---|
class |
FooKernelFunction
Provides an experimental KernelDistanceFunction for NumberVectors. |
class |
LinearKernelFunction<O extends NumberVector<?,?>>
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2. |
class |
PolynomialKernelFunction
Provides a polynomial Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by (V1^T*V2)^degree. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
---|
Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix declared as DistanceFunction | |
---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use |
private DistanceFunction<O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use |
Constructors in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type DistanceFunction | |
---|---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
ScalingFunction scaling,
boolean skipzero)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn declared as DistanceFunction | |
---|---|
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.distanceFunction
The distance function to be used. |
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.distanceFunction
Hold the distance function to be used. |
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used. |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return DistanceFunction | |
---|---|
DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.getDistanceFunction()
Get the distance function. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca declared as DistanceFunction | |
---|---|
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type DistanceFunction | |
---|---|
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<NV> pca)
Constructor. |
|
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
Integer k)
Constructor. |
|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.snn |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.snn declared as DistanceFunction | |
---|---|
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.distanceFunction
Hold the distance function to be used. |
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.Factory.distanceFunction
Hold the distance function to be used. |
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used. |
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type DistanceFunction | |
---|---|
SharedNearestNeighborPreprocessor.Factory(int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj declared as DistanceFunction | |
---|---|
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.rangeQueryDistanceFunction
The distance function for the variance analysis. |
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.Factory.rangeQueryDistanceFunction
The distance function for the variance analysis. |
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.Factory.Parameterizer.rangeQueryDistanceFunction
The distance function for the variance analysis. |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type DistanceFunction | |
---|---|
protected void |
AbstractSubspaceProjectionIndex.Factory.Parameterizer.configEpsilon(Parameterization config,
DistanceFunction<NV,D> rangeQueryDistanceFunction)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type DistanceFunction | |
---|---|
AbstractSubspaceProjectionIndex.Factory(D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor. |
|
AbstractSubspaceProjectionIndex(Relation<NV> relation,
D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor. |
|
FourCSubspaceIndex.Factory(D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Constructor. |
|
FourCSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Full constructor. |
|
PreDeConSubspaceIndex.Factory(D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor. |
|
PreDeConSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical that return DistanceFunction | |
---|---|
abstract DistanceFunction<? super O,D> |
MetricalIndexTree.getDistanceFunction()
Returns the distance function of this metrical index. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants declared as DistanceFunction | |
---|---|
protected DistanceFunction<O,D> |
AbstractMTreeFactory.distanceFunction
Holds the instance of the distance function specified by AbstractMTreeFactory.DISTANCE_FUNCTION_ID . |
protected DistanceFunction<O,D> |
AbstractMTreeFactory.Parameterizer.distanceFunction
|
protected DistanceFunction<O,D> |
AbstractMTree.distanceFunction
Holds the instance of the trees distance function |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that return DistanceFunction | |
---|---|
DistanceFunction<O,D> |
AbstractMTree.getDistanceFunction()
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants with parameters of type DistanceFunction | |
---|---|
AbstractMTree(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
AbstractMTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees with parameters of type DistanceFunction | |
---|---|
AbstractMkTree(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
AbstractMkTreeUnified(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
AbstractMkTreeUnifiedFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceFunction | |
---|---|
MkAppTree(PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
|
MkAppTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
|
MkAppTreeIndex(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceFunction | |
---|---|
MkCoPTree(PageFile<MkCoPTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkCopTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkCoPTreeIndex(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceFunction | |
---|---|
MkMaxTree(PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkMaxTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkMaxTreeIndex(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceFunction | |
---|---|
MkTabTree(PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkTabTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkTabTreeIndex(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceFunction | |
---|---|
MTree(PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
MTreeFactory(String fileName,
int pageSize,
long cacheSize,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
MTreeIndex(Relation<O> relation,
PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceFunction in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters |
---|
Constructors in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters with parameters of type DistanceFunction | |
---|---|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist)
Constructs a double parameter with the given optionID. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
boolean optional)
Constructs a double parameter with the given optionID and optional flag. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
D defaultValue)
Constructs a double parameter with the given optionID and default value. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
List<ParameterConstraint<D>> constraints)
Constructs a double parameter with the given optionID, and parameter constraints. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
List<ParameterConstraint<D>> cons,
boolean optional)
Constructs a double parameter with the given optionID, parameter constraints, and optional flag. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
List<ParameterConstraint<D>> cons,
D defaultValue)
Constructs a double parameter with the given optionID, parameter constraints, and default value. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
ParameterConstraint<D> constraint)
Constructs a double parameter with the given optionID, and parameter constraint. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
ParameterConstraint<D> constraint,
boolean optional)
Constructs a double parameter with the given optionID, parameter constraint, and optional flag. |
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
ParameterConstraint<D> constraint,
D defaultValue)
Constructs a double parameter with the given optionID, parameter constraint, and default value. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |