Uses of Interface
de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction

Packages that use DistanceFunction
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood Spatial outlier neighborhood classes 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application.cache Utility applications for the persistence layer such as distance cache builders. 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.database.query.distance Prepared queries for distances. 
de.lmu.ifi.dbs.elki.datasource.parser Parsers for different file formats and data types. 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.external Distance functions using external data sources. 
de.lmu.ifi.dbs.elki.distance.distancefunction.geo Geographic (earth) distance functions. 
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace Distance functions based on subspaces. 
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries Distance functions designed for time series. 
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel Kernel functions. 
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination. 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.snn Indexes providing nearest neighbor sets 
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj Index using a preprocessed local subspaces. 
de.lmu.ifi.dbs.elki.index.tree.metrical Tree-based index structures for metrical vector spaces. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants M-Tree and variants. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax MkMaxTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab MkTabTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters Classes for various typed parameters. 
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm
 

Fields in de.lmu.ifi.dbs.elki.algorithm declared as DistanceFunction
private  DistanceFunction<? super O,D> AbstractDistanceBasedAlgorithm.distanceFunction
          Holds the instance of the distance function specified by AbstractDistanceBasedAlgorithm.DISTANCE_FUNCTION_ID.
protected  DistanceFunction<O,D> AbstractDistanceBasedAlgorithm.Parameterizer.distanceFunction
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm with type parameters of type DistanceFunction
static
<F extends DistanceFunction<?,?>>
ObjectParameter<F>
AbstractAlgorithm.makeParameterDistanceFunction(Class<?> defaultDistanceFunction, Class<?> restriction)
          Make a default distance function configuration option
 

Methods in de.lmu.ifi.dbs.elki.algorithm that return DistanceFunction
 DistanceFunction<? super O,D> AbstractDistanceBasedAlgorithm.getDistanceFunction()
          Returns the distanceFunction.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm with parameters of type DistanceFunction
AbstractDistanceBasedAlgorithm(DistanceFunction<? super O,D> distanceFunction)
          Constructor.
KNNDistanceOrder(DistanceFunction<O,D> distanceFunction, int k, double percentage)
          Constructor.
KNNJoin(DistanceFunction<? super V,D> distanceFunction, int k)
          Constructor.
MaterializeDistances(DistanceFunction<? super O,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering declared as DistanceFunction
private  DistanceFunction<? super V,DoubleDistance> AbstractProjectedClustering.distanceFunction
          The euclidean distance function.
protected  DistanceFunction<V,D> AbstractProjectedDBSCAN.Parameterizer.innerdist
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return DistanceFunction
protected  DistanceFunction<? super V,DoubleDistance> AbstractProjectedClustering.getDistanceFunction()
          Returns the distance function.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceFunction
protected  void AbstractProjectedDBSCAN.Parameterizer.configEpsilon(Parameterization config, DistanceFunction<V,D> innerdist)
           
protected  void AbstractProjectedDBSCAN.Parameterizer.configOuterDistance(Parameterization config, D epsilon, int minpts, Class<?> preprocessorClass, DistanceFunction<V,D> innerdist)
           
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceFunction
DBSCAN(DistanceFunction<? super O,D> distanceFunction, D epsilon, int minpts)
          Constructor with parameters.
DeLiClu(DistanceFunction<? super NV,D> distanceFunction, int minpts)
          Constructor.
OPTICS(DistanceFunction<? super O,D> distanceFunction, D epsilon, int minpts)
          Constructor.
SLINK(DistanceFunction<? super O,D> distanceFunction, Integer minclusters)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as DistanceFunction
protected  DistanceFunction<? super O,D> LoOP.comparisonDistanceFunction
          Preprocessor Step 2
protected  DistanceFunction<O,D> LoOP.Parameterizer.comparisonDistanceFunction
          Preprocessor Step 2
private  DistanceFunction<V,D> ReferenceBasedOutlierDetection.distanceFunction
          Distance function to use.
protected  DistanceFunction<O,D> OnlineLOF.Parameterizer.neighborhoodDistanceFunction
          Neighborhood distance function.
protected  DistanceFunction<? super O,D> LOF.neighborhoodDistanceFunction
          Neighborhood distance function.
protected  DistanceFunction<O,D> LOF.Parameterizer.neighborhoodDistanceFunction
          Neighborhood distance function.
protected  DistanceFunction<O,D> OnlineLOF.Parameterizer.reachabilityDistanceFunction
          Reachability distance function.
protected  DistanceFunction<? super O,D> LoOP.reachabilityDistanceFunction
          Preprocessor Step 1
protected  DistanceFunction<O,D> LoOP.Parameterizer.reachabilityDistanceFunction
          Preprocessor Step 1
protected  DistanceFunction<? super O,D> LOF.reachabilityDistanceFunction
          Reachability distance function.
protected  DistanceFunction<O,D> LOF.Parameterizer.reachabilityDistanceFunction
          Reachability distance function.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceFunction
protected  void AbstractDBOutlier.Parameterizer.configD(Parameterization config, DistanceFunction<?,D> distanceFunction)
          Grab the 'd' configuration option.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceFunction
ABOD(int k, int sampleSize, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
ABOD(int k, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
AbstractDBOutlier(DistanceFunction<? super O,D> distanceFunction, D d)
          Constructor with actual parameters.
DBOutlierDetection(DistanceFunction<O,D> distanceFunction, D d, double p)
          Constructor with actual parameters.
DBOutlierScore(DistanceFunction<O,D> distanceFunction, D d)
          Constructor with parameters.
INFLO(DistanceFunction<? super O,D> distanceFunction, double m, int k)
          Constructor with parameters.
KNNOutlier(DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor for a single kNN query.
KNNWeightOutlier(DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor with parameters.
LDOF(DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor.
LOCI(DistanceFunction<? super O,D> distanceFunction, D rmax, int nmin, double alpha)
          Constructor.
LOF(int k, DistanceFunction<? super O,D> neighborhoodDistanceFunction, DistanceFunction<? super O,D> reachabilityDistanceFunction)
          Constructor.
LOF(int k, DistanceFunction<? super O,D> neighborhoodDistanceFunction, DistanceFunction<? super O,D> reachabilityDistanceFunction)
          Constructor.
LoOP(int kreach, int kcomp, DistanceFunction<? super O,D> reachabilityDistanceFunction, DistanceFunction<? super O,D> comparisonDistanceFunction, double lambda)
          Constructor with parameters.
LoOP(int kreach, int kcomp, DistanceFunction<? super O,D> reachabilityDistanceFunction, DistanceFunction<? super O,D> comparisonDistanceFunction, double lambda)
          Constructor with parameters.
OnlineLOF(int k, DistanceFunction<? super O,D> neighborhoodDistanceFunction, DistanceFunction<? super O,D> reachabilityDistanceFunction)
          Constructor.
OnlineLOF(int k, DistanceFunction<? super O,D> neighborhoodDistanceFunction, DistanceFunction<? super O,D> reachabilityDistanceFunction)
          Constructor.
OPTICSOF(DistanceFunction<? super O,D> distanceFunction, int minpts)
          Constructor with parameters.
ReferenceBasedOutlierDetection(int k, DistanceFunction<V,D> distanceFunction, ReferencePointsHeuristic<V> refp)
          Constructor with parameters.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial declared as DistanceFunction
private  DistanceFunction<O,D> AbstractDistanceBasedSpatialOutlier.nonSpatialDistanceFunction
          The distance function to use
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial that return DistanceFunction
protected  DistanceFunction<O,D> AbstractDistanceBasedSpatialOutlier.getNonSpatialDistanceFunction()
          Get the non-spatial relation
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with parameters of type DistanceFunction
AbstractDistanceBasedSpatialOutlier(NeighborSetPredicate.Factory<N> npredf, DistanceFunction<O,D> nonSpatialDistanceFunction)
          Constructor.
CTLuGLSBackwardSearchAlgorithm(DistanceFunction<V,D> distanceFunction, int k, double alpha)
          Constructor.
CTLuRandomWalkEC(DistanceFunction<N,D> distanceFunction, double alpha, double c, int k)
          Constructor
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood declared as DistanceFunction
private  DistanceFunction<? super O,D> PrecomputedKNearestNeighborNeighborhood.Factory.distFunc
          distance function to use
(package private)  DistanceFunction<? super O,D> PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer.distFunc
          Distance function
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood with parameters of type DistanceFunction
PrecomputedKNearestNeighborNeighborhood.Factory(int k, DistanceFunction<? super O,D> distFunc)
          Factory Constructor
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type DistanceFunction
DistanceStatisticsWithClasses(DistanceFunction<? super O,D> distanceFunction, int numbins, boolean exact, boolean sampling)
          Constructor.
EvaluateRankingQuality(DistanceFunction<? super V,D> distanceFunction, int numbins)
          Constructor.
RankingQualityHistogram(DistanceFunction<? super O,D> distanceFunction, int numbins)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.application.cache
 

Fields in de.lmu.ifi.dbs.elki.application.cache declared as DistanceFunction
private  DistanceFunction<O,D> CacheFloatDistanceInOnDiskMatrix.distance
          Distance function that is to be cached.
private  DistanceFunction<O,D> CacheFloatDistanceInOnDiskMatrix.Parameterizer.distance
          Distance function that is to be cached.
private  DistanceFunction<O,D> CacheDoubleDistanceInOnDiskMatrix.distance
          Distance function that is to be cached.
private  DistanceFunction<O,D> CacheDoubleDistanceInOnDiskMatrix.Parameterizer.distance
          Distance function that is to be cached.
 

Constructors in de.lmu.ifi.dbs.elki.application.cache with parameters of type DistanceFunction
CacheDoubleDistanceInOnDiskMatrix(boolean verbose, Database database, DistanceFunction<O,D> distance, File out)
          Constructor.
CacheFloatDistanceInOnDiskMatrix(boolean verbose, Database database, DistanceFunction<O,D> distance, File out)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.application.visualization
 

Fields in de.lmu.ifi.dbs.elki.application.visualization declared as DistanceFunction
private  DistanceFunction<O,D> KNNExplorer.distanceFunction
          Holds the instance of the distance function specified by KNNExplorer.DISTANCE_FUNCTION_ID.
protected  DistanceFunction<O,D> KNNExplorer.Parameterizer.distanceFunction
           
 

Constructors in de.lmu.ifi.dbs.elki.application.visualization with parameters of type DistanceFunction
KNNExplorer(boolean verbose, Database database, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.database
 

Methods in de.lmu.ifi.dbs.elki.database with parameters of type DistanceFunction
static
<O,D extends Distance<D>>
DistanceQuery<O,D>
QueryUtil.getDistanceQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a distance query for a given distance function, automatically choosing a relation.
<O,D extends Distance<D>>
DistanceQuery<O,D>
AbstractDatabase.getDistanceQuery(Relation<O> objQuery, DistanceFunction<? super O,D> distanceFunction, Object... hints)
           
<O,D extends Distance<D>>
DistanceQuery<O,D>
Database.getDistanceQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get the distance query for a particular distance function.
static
<O,D extends Distance<D>>
KNNQuery<O,D>
QueryUtil.getKNNQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a KNN query object for the given distance function.
static
<O,D extends Distance<D>>
KNNQuery<O,D>
QueryUtil.getKNNQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a KNN query object for the given distance function.
static
<O,D extends Distance<D>>
RangeQuery<O,D>
QueryUtil.getRangeQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a range query object for the given distance function.
static
<O,D extends Distance<D>>
RangeQuery<O,D>
QueryUtil.getRangeQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a range query object for the given distance function.
static
<O,D extends Distance<D>>
RKNNQuery<O,D>
QueryUtil.getRKNNQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a rKNN query object for the given distance function.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.database.query.distance
 

Methods in de.lmu.ifi.dbs.elki.database.query.distance that return DistanceFunction
 DistanceFunction<? super O,D> DistanceQuery.getDistanceFunction()
          Get the inner distance function.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.datasource.parser
 

Fields in de.lmu.ifi.dbs.elki.datasource.parser declared as DistanceFunction
private  DistanceFunction<?,D> NumberDistanceParser.distanceFunction
          The distance function.
protected  DistanceFunction<?,D> NumberDistanceParser.Parameterizer.distanceFunction
          The distance function.
 

Constructors in de.lmu.ifi.dbs.elki.datasource.parser with parameters of type DistanceFunction
NumberDistanceParser(Pattern colSep, char quoteChar, DistanceFunction<?,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction with type parameters of type DistanceFunction
static class AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
          The actual instance bound to a particular database.
 

Subinterfaces of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction
 interface DBIDDistanceFunction<D extends Distance<?>>
          Distance functions valid in a database context only (i.e. for DBIDs) For any "distance" that cannot be computed for arbitrary objects, only those that exist in the database and referenced by their ID.
 interface FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?,?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
          Interface for local PCA based preprocessors.
 interface IndexBasedDistanceFunction<O,D extends Distance<D>>
          Distance function relying on an index (such as preprocessed neighborhoods).
 interface PrimitiveDistanceFunction<O,D extends Distance<?>>
          Primitive distance function that is defined on some kind of object.
 interface PrimitiveDoubleDistanceFunction<O>
          Interface for distance functions that can provide a raw double value.
 interface SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
          API for a spatial primitive distance function.
 interface SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>
          Interface combining spatial primitive distance functions with primitive number distance functions.
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement DistanceFunction
 class AbstractCosineDistanceFunction
          Abstract base class for Cosine and ArcCosine distances.
 class AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
          Abstract super class for distance functions needing a database context.
 class AbstractDBIDDistanceFunction<D extends Distance<D>>
          AbstractDistanceFunction provides some methods valid for any extending class.
 class AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
          Abstract super class for distance functions needing a database index.
 class AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
          AbstractDistanceFunction provides some methods valid for any extending class.
 class AbstractVectorDoubleDistanceFunction
          Abstract base class for the most common family of distance functions: defined on number vectors and returning double values.
 class ArcCosineDistanceFunction
          Cosine distance function for feature vectors.
 class CosineDistanceFunction
          Cosine distance function for feature vectors.
 class EuclideanDistanceFunction
          Provides the Euclidean distance for FeatureVectors.
 class LocallyWeightedDistanceFunction<V extends NumberVector<?,?>>
          Provides a locally weighted distance function.
 class LPNormDistanceFunction
          Provides a LP-Norm for FeatureVectors.
 class ManhattanDistanceFunction
          Manhattan distance function to compute the Manhattan distance for a pair of FeatureVectors.
 class MaximumDistanceFunction
          Maximum distance function to compute the Maximum distance for a pair of FeatureVectors.
 class MinimumDistanceFunction
          Maximum distance function to compute the Minimum distance for a pair of FeatureVectors.
 class MinKDistance<O,D extends Distance<D>>
          A distance that is at least the distance to the kth nearest neighbor.
 class ProxyDistanceFunction<O,D extends Distance<D>>
          Distance function to proxy computations to another distance (that probably was run before).
 class RandomStableDistanceFunction
          This is a dummy distance providing random values (obviously not metrical), useful mostly for unit tests and baseline evaluations: obviously this distance provides no benefit whatsoever.
 class SharedNearestNeighborJaccardDistanceFunction<O>
          SharedNearestNeighborJaccardDistanceFunction computes the Jaccard coefficient, which is a proper distance metric.
 class SquaredEuclideanDistanceFunction
          Provides the squared Euclidean distance for FeatureVectors.
 class WeightedDistanceFunction
          Provides the Weighted distance for feature vectors.
 class WeightedLPNormDistanceFunction
          Weighted version of the Euclidean distance function.
 class WeightedSquaredEuclideanDistanceFunction
          Provides the squared Euclidean distance for FeatureVectors.
 

Fields in de.lmu.ifi.dbs.elki.distance.distancefunction declared as DistanceFunction
(package private)  DistanceFunction<? super O,D> AbstractDatabaseDistanceFunction.Instance.parent
          Parent distance
protected  F AbstractIndexBasedDistanceFunction.Instance.parent
          Our parent distance function
protected  DistanceFunction<? super O,D> MinKDistance.parentDistance
          The distance function to determine the exact distance.
protected  DistanceFunction<? super O,D> MinKDistance.Parameterizer.parentDistance
          The distance function to determine the exact distance.
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DistanceFunction
 DistanceFunction<? super O,D> AbstractDatabaseDistanceFunction.Instance.getDistanceFunction()
           
 DistanceFunction<? super T,D> MinKDistance.Instance.getDistanceFunction()
           
static
<V,T extends V,D extends Distance<D>>
DistanceFunction<? super V,D>
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
          Helper function, to resolve any wrapped Proxy Distances
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceFunction
static
<V,T extends V,D extends Distance<D>>
DistanceFunction<? super V,D>
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
          Helper function, to resolve any wrapped Proxy Distances
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceFunction
AbstractDatabaseDistanceFunction.Instance(Relation<O> database, DistanceFunction<? super O,D> parent)
          Constructor.
MinKDistance.Instance(Relation<T> relation, int k, DistanceFunction<? super O,D> parentDistance)
          Constructor.
MinKDistance(DistanceFunction<? super O,D> parentDistance, int k)
          Full constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement DistanceFunction
 class AbstractSimilarityAdapter<O>
          Adapter from a normalized similarity function to a distance function.
 class SimilarityAdapterArccos<O>
          Adapter from a normalized similarity function to a distance function using arccos(sim).
 class SimilarityAdapterLinear<O>
          Adapter from a normalized similarity function to a distance function using 1 - sim.
 class SimilarityAdapterLn<O>
          Adapter from a normalized similarity function to a distance function using -log(sim).
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type DistanceFunction
AbstractSimilarityAdapter.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterArccos.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLinear.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLn.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that implement DistanceFunction
 class HistogramIntersectionDistanceFunction
          Intersection distance for color histograms.
 class HSBHistogramQuadraticDistanceFunction
          Distance function for HSB color histograms based on a quadratic form and color similarity.
 class RGBHistogramQuadraticDistanceFunction
          Distance function for RGB color histograms based on a quadratic form and color similarity.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement DistanceFunction
 class ERiCDistanceFunction
          Provides a distance function for building the hierarchy in the ERiC algorithm.
 class PCABasedCorrelationDistanceFunction
          Provides the correlation distance for real valued vectors.
 class PearsonCorrelationDistanceFunction
          Pearson correlation distance function for feature vectors.
 class SquaredPearsonCorrelationDistanceFunction
          Squared Pearson correlation distance function for feature vectors.
 class WeightedPearsonCorrelationDistanceFunction
          Pearson correlation distance function for feature vectors.
 class WeightedSquaredPearsonCorrelationDistanceFunction
          Squared Pearson correlation distance function for feature vectors.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.external
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.external that implement DistanceFunction
 class DiskCacheBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class DiskCacheBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 class FileBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class FileBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.geo
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.geo that implement DistanceFunction
 class DimensionSelectingLatLngDistanceFunction
          Distance function for 2D vectors in Latitude, Longitude form.
 class LatLngDistanceFunction
          Distance function for 2D vectors in Latitude, Longitude form.
 class LngLatDistanceFunction
          Distance function for 2D vectors in Longitude, Latitude form.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement DistanceFunction
 class AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?,?>>
          Provides a distance function that computes the distance (which is a double distance) between feature vectors only in specified dimensions.
 class AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
          Abstract super class for all preference vector based correlation distance functions.
 class DimensionSelectingDistanceFunction
          Provides a distance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension.
 class DimensionsSelectingEuclideanDistanceFunction
          Provides a distance function that computes the Euclidean distance between feature vectors only in specified dimensions.
 class DiSHDistanceFunction
          Distance function used in the DiSH algorithm.
 class HiSCDistanceFunction<V extends NumberVector<?,?>>
          Distance function used in the HiSC algorithm.
 class SubspaceDistanceFunction
          Provides a distance function to determine a kind of correlation distance between two points, which is a pair consisting of the distance between the two subspaces spanned by the strong eigenvectors of the two points and the affine distance between the two subspaces.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries that implement DistanceFunction
 class AbstractEditDistanceFunction
          Provides the Edit Distance for FeatureVectors.
 class DTWDistanceFunction
          Provides the Dynamic Time Warping distance for FeatureVectors.
 class EDRDistanceFunction
          Provides the Edit Distance on Real Sequence distance for FeatureVectors.
 class ERPDistanceFunction
          Provides the Edit Distance With Real Penalty distance for FeatureVectors.
 class LCSSDistanceFunction
          Provides the Longest Common Subsequence distance for FeatureVectors.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 

Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that implement DistanceFunction
 class FooKernelFunction
          Provides an experimental KernelDistanceFunction for NumberVectors.
 class LinearKernelFunction<O extends NumberVector<?,?>>
          Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2.
 class PolynomialKernelFunction
          Provides a polynomial Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by (V1^T*V2)^degree.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix
 

Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix declared as DistanceFunction
private  DistanceFunction<? super O,? extends NumberDistance<?,?>> ComputeSimilarityMatrixImage.distanceFunction
          The distance function to use
private  DistanceFunction<O,? extends NumberDistance<?,?>> ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
          The distance function to use
 

Constructors in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type DistanceFunction
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction, ScalingFunction scaling, boolean skipzero)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn declared as DistanceFunction
protected  DistanceFunction<? super O,D> AbstractMaterializeKNNPreprocessor.distanceFunction
          The distance function to be used.
protected  DistanceFunction<? super O,D> AbstractMaterializeKNNPreprocessor.Factory.distanceFunction
          Hold the distance function to be used.
protected  DistanceFunction<? super O,D> AbstractMaterializeKNNPreprocessor.Factory.Parameterizer.distanceFunction
          Hold the distance function to be used.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return DistanceFunction
 DistanceFunction<? super O,D> AbstractMaterializeKNNPreprocessor.Factory.getDistanceFunction()
          Get the distance function.
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type DistanceFunction
AbstractMaterializeKNNPreprocessor.Factory(int k, DistanceFunction<? super O,D> distanceFunction)
          Index factory.
AbstractMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor.
MaterializeKNNAndRKNNPreprocessor.Factory(int k, DistanceFunction<? super O,D> distanceFunction)
          Constructor.
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor.
MaterializeKNNPreprocessor.Factory(int k, DistanceFunction<? super O,D> distanceFunction)
          Index factory.
MaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor with preprocessing step.
MaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k, boolean preprocess)
          Constructor.
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory(int k, DistanceFunction<? super O,D> distanceFunction)
          Constructor.
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor
PartitionApproximationMaterializeKNNPreprocessor.Factory(int k, DistanceFunction<? super O,D> distanceFunction, int partitions)
          Constructor.
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k, int partitions)
          Constructor
SpatialApproximationMaterializeKNNPreprocessor.Factory(int k, DistanceFunction<? super NumberVector<?,?>,D> distanceFunction)
          Constructor.
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca declared as DistanceFunction
protected  DistanceFunction<NV,DoubleDistance> AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
          Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID.
protected  DistanceFunction<NV,DoubleDistance> AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
          Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID.
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type DistanceFunction
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<NV> pca)
          Constructor.
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<V> pca, Integer k)
          Constructor.
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<V> pca, DoubleDistance epsilon)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.snn
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.snn declared as DistanceFunction
protected  DistanceFunction<O,D> SharedNearestNeighborPreprocessor.distanceFunction
          Hold the distance function to be used.
protected  DistanceFunction<O,D> SharedNearestNeighborPreprocessor.Factory.distanceFunction
          Hold the distance function to be used.
protected  DistanceFunction<O,D> SharedNearestNeighborPreprocessor.Factory.Parameterizer.distanceFunction
          Hold the distance function to be used.
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type DistanceFunction
SharedNearestNeighborPreprocessor.Factory(int numberOfNeighbors, DistanceFunction<O,D> distanceFunction)
          Constructor.
SharedNearestNeighborPreprocessor(Relation<O> relation, int numberOfNeighbors, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj declared as DistanceFunction
protected  DistanceFunction<NV,D> AbstractSubspaceProjectionIndex.rangeQueryDistanceFunction
          The distance function for the variance analysis.
protected  DistanceFunction<NV,D> AbstractSubspaceProjectionIndex.Factory.rangeQueryDistanceFunction
          The distance function for the variance analysis.
protected  DistanceFunction<NV,D> AbstractSubspaceProjectionIndex.Factory.Parameterizer.rangeQueryDistanceFunction
          The distance function for the variance analysis.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type DistanceFunction
protected  void AbstractSubspaceProjectionIndex.Factory.Parameterizer.configEpsilon(Parameterization config, DistanceFunction<NV,D> rangeQueryDistanceFunction)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type DistanceFunction
AbstractSubspaceProjectionIndex.Factory(D epsilon, DistanceFunction<NV,D> rangeQueryDistanceFunction, int minpts)
          Constructor.
AbstractSubspaceProjectionIndex(Relation<NV> relation, D epsilon, DistanceFunction<NV,D> rangeQueryDistanceFunction, int minpts)
          Constructor.
FourCSubspaceIndex.Factory(D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, PCAFilteredRunner<V> pca)
          Constructor.
FourCSubspaceIndex(Relation<V> relation, D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, PCAFilteredRunner<V> pca)
          Full constructor.
PreDeConSubspaceIndex.Factory(D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, double delta)
          Constructor.
PreDeConSubspaceIndex(Relation<V> relation, D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, double delta)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical that return DistanceFunction
abstract  DistanceFunction<? super O,D> MetricalIndexTree.getDistanceFunction()
          Returns the distance function of this metrical index.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants declared as DistanceFunction
protected  DistanceFunction<O,D> AbstractMTreeFactory.distanceFunction
          Holds the instance of the distance function specified by AbstractMTreeFactory.DISTANCE_FUNCTION_ID.
protected  DistanceFunction<O,D> AbstractMTreeFactory.Parameterizer.distanceFunction
           
protected  DistanceFunction<O,D> AbstractMTree.distanceFunction
          Holds the instance of the trees distance function
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that return DistanceFunction
 DistanceFunction<O,D> AbstractMTree.getDistanceFunction()
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants with parameters of type DistanceFunction
AbstractMTree(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
AbstractMTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees with parameters of type DistanceFunction
AbstractMkTree(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
AbstractMkTreeUnified(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
AbstractMkTreeUnifiedFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceFunction
MkAppTree(PageFile<MkAppTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
MkAppTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
MkAppTreeIndex(Relation<O> relation, PageFile<MkAppTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceFunction
MkCoPTree(PageFile<MkCoPTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkCopTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkCoPTreeIndex(Relation<O> relation, PageFile<MkCoPTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceFunction
MkMaxTree(PageFile<MkMaxTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkMaxTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkMaxTreeIndex(Relation<O> relation, PageFile<MkMaxTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceFunction
MkTabTree(PageFile<MkTabTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkTabTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkTabTreeIndex(Relation<O> relation, PageFile<MkTabTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceFunction
MTree(PageFile<MTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
MTreeFactory(String fileName, int pageSize, long cacheSize, DistanceFunction<O,D> distanceFunction)
          Constructor.
MTreeIndex(Relation<O> relation, PageFile<MTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceFunction in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters
 

Constructors in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters with parameters of type DistanceFunction
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist)
          Constructs a double parameter with the given optionID.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, boolean optional)
          Constructs a double parameter with the given optionID and optional flag.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, D defaultValue)
          Constructs a double parameter with the given optionID and default value.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, List<ParameterConstraint<D>> constraints)
          Constructs a double parameter with the given optionID, and parameter constraints.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, List<ParameterConstraint<D>> cons, boolean optional)
          Constructs a double parameter with the given optionID, parameter constraints, and optional flag.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, List<ParameterConstraint<D>> cons, D defaultValue)
          Constructs a double parameter with the given optionID, parameter constraints, and default value.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, ParameterConstraint<D> constraint)
          Constructs a double parameter with the given optionID, and parameter constraint.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, ParameterConstraint<D> constraint, boolean optional)
          Constructs a double parameter with the given optionID, parameter constraint, and optional flag.
DistanceParameter(OptionID optionID, DistanceFunction<?,D> dist, ParameterConstraint<D> constraint, D defaultValue)
          Constructs a double parameter with the given optionID, parameter constraint, and default value.
 


Release 0.4.0 (2011-09-20_1324)