Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.classification |
Classification algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance.parallel |
Parallel implementations of distance-based outlier detectors.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic |
Outlier detection algorithms based on intrinsic dimensionality.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
Weighted Neighborhood definitions.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms.
|
de.lmu.ifi.dbs.elki.application.jsmap |
JavaScript based map client - server architecture.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.extractor |
Classes to extract clusterings from hierarchical clustering.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.histogram |
Functionality for the evaluation of algorithms using histograms.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.workflow |
Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM
|
Modifier and Type | Method and Description |
---|---|
Result |
NullAlgorithm.run(Database database) |
Result |
Algorithm.run(Database database)
Runs the algorithm.
|
R |
AbstractAlgorithm.run(Database database) |
CollectionResult<MaterializeDistances.DistanceEntry> |
MaterializeDistances.run(Database database,
Relation<O> relation)
Iterates over all points in the database.
|
KNNDistancesSampler.KNNDistanceOrderResult |
KNNDistancesSampler.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
database.
|
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
given database based on a linear correlation PCA.
|
Modifier and Type | Method and Description |
---|---|
Result |
ValidateApproximativeKNNIndex.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm, with a separate query set.
|
Result |
KNNBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Method and Description |
---|---|
void |
PriorProbabilityClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes.
|
void |
KNNClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labels) |
void |
Classifier.buildClassifier(Database database,
Relation<? extends ClassLabel> classLabels)
Performs the training.
|
Result |
KNNClassifier.run(Database database)
Deprecated.
|
R |
AbstractClassifier.run(Database database)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
protected DistanceQuery<V> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function.
|
C |
ClusteringAlgorithm.run(Database database) |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<PrototypeModel<O>> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids)
Compute the initial similarity matrix.
|
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Field and Description |
---|---|
private Database |
AbstractBiclustering.database
Keeps the currently set database.
|
Modifier and Type | Method and Description |
---|---|
Database |
AbstractBiclustering.getDatabase()
Getter for database.
|
Modifier and Type | Method and Description |
---|---|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
Modifier and Type | Method and Description |
---|---|
private Relation<ParameterizationFunction> |
CASH.preprocess(Database db,
Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
CorrelationClusterOrder |
HiCO.run(Database db,
Relation<V> relation) |
Clustering<CorrelationModel<V>> |
ERiC.run(Database database,
Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
Clustering<DimensionModel> |
COPAC.run(Database database,
Relation<V> relation)
Run the COPAC algorithm.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Constructor and Description |
---|
HiCO.Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
List<SphericalGaussianModel> |
SphericalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<MultivariateGaussianModel> |
MultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<? extends EMClusterModel<M>> |
EMClusterModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df)
Build the initial models
|
List<DiagonalGaussianModel> |
DiagonalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
Clustering<M> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
ERiCNeighborPredicate.Instance |
ERiCNeighborPredicate.instantiate(Database database,
Relation<V> relation)
Full instantiation interface.
|
COPACNeighborPredicate.Instance |
COPACNeighborPredicate.instantiate(Database database,
Relation<V> relation)
Full instantiation method.
|
<T> NeighborPredicate.Instance<T> |
PreDeConNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> CorePredicate.Instance<T> |
PreDeConCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
NeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type)
Instantiate for a database.
|
<T> CorePredicate.Instance<T> |
MinPtsCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
FourCNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> CorePredicate.Instance<T> |
FourCCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
EpsilonNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
ERiCNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> CorePredicate.Instance<T> |
CorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type)
Instantiate for a database.
|
<T> NeighborPredicate.Instance<T> |
COPACNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Clustering<Model> |
LSDBC.run(Database database,
Relation<O> relation)
Run the LSDBC algorithm
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
HierarchicalClusteringAlgorithm.run(Database db) |
PointerDensityHierarchyRepresentationResult |
SLINKHDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database.
|
PointerDensityHierarchyRepresentationResult |
HDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
AnderbergHierarchicalClustering.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
AGNES.run(Database db,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.run(Database database) |
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.run(Database database) |
Clustering<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.run(Database database) |
Modifier and Type | Method and Description |
---|---|
Clustering<M> |
XMeans.run(Database database,
Relation<V> relation)
Run the algorithm on a database and relation.
|
Clustering<KMeansModel> |
SingleAssignmentKMeans.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<MedoidModel> |
KMedoidsEM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<MeanModel> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansHybridLloydMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansHamerly.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansElkan.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansBatchedLloyd.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<MedoidModel> |
CLARA.run(Database database,
Relation<V> relation) |
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector,O extends NumberVector> |
PredefinedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends V,O extends NumberVector> |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends V,O extends NumberVector> |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory)
Choose initial means
|
<T extends NumberVector,V extends NumberVector> |
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel> |
ParallelLloydKMeans.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
private void |
ExternalClustering.attachToRelation(Database database,
Relation<?> r,
TIntArrayList assignment,
ArrayList<String> name)
Build a clustering from the file result.
|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
ClusterOrder |
OPTICSTypeAlgorithm.run(Database database) |
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
ClusterOrder |
DeLiClu.run(Database database,
Relation<NV> relation) |
ClusterOrder |
OPTICSList.run(Database db,
Relation<O> relation) |
ClusterOrder |
OPTICSHeap.run(Database db,
Relation<O> relation) |
abstract ClusterOrder |
GeneralizedOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
abstract ClusterOrder |
AbstractOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
ClusterOrder |
FastOPTICS.run(Database db,
Relation<V> rel)
Run the algorithm.
|
Constructor and Description |
---|
GeneralizedOPTICS.Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
OPTICSHeap.Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
OPTICSList.Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Modifier and Type | Method and Description |
---|---|
Clustering<SubspaceModel> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
ClusterOrder |
HiSC.run(Database db,
Relation<V> relation) |
Clustering<SubspaceModel> |
DiSH.run(Database db,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<SubspaceModel> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
private Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel> |
DOC.runFastDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Constructor and Description |
---|
DiSH.Instance(Database db,
Relation<V> relation)
Constructor.
|
HiSC.Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Modifier and Type | Method and Description |
---|---|
<T> NeighborPredicate.Instance<T> |
FDBSCANNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
Clustering<?> |
RepresentativeUncertainClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
C |
CenterOfMassMetaClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
Clustering<?> |
UKMeans.run(Database database,
Relation<DiscreteUncertainObject> relation)
Run the clustering.
|
Modifier and Type | Method and Description |
---|---|
FrequentItemsetsResult |
FPGrowth.run(Database db,
Relation<BitVector> relation)
Run the FP-Growth algorithm
|
FrequentItemsetsResult |
Eclat.run(Database db,
Relation<BitVector> relation)
Run the Eclat algorithm
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutlierAlgorithm.run(Database database) |
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection.
|
OutlierResult |
DWOF.run(Database database,
Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by
calling all the other methods in the proper order.
|
OutlierResult |
SimpleCOP.run(Database database,
Relation<V> data) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
LBABOD.run(Database db,
Relation<V> relation)
Run LB-ABOD on the data set.
|
OutlierResult |
FastABOD.run(Database db,
Relation<V> relation)
Run Fast-ABOD on the data set.
|
OutlierResult |
ABOD.run(Database db,
Relation<V> relation)
Run ABOD on the data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SilhouetteOutlierDetection.run(Database database) |
OutlierResult |
KMeansOutlierDetection.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm.
|
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
protected DoubleDataStore |
DBOutlierScore.computeOutlierScores(Database database,
Relation<O> relation,
double d) |
protected DoubleDataStore |
DBOutlierDetection.computeOutlierScores(Database database,
Relation<O> relation,
double neighborhoodSize) |
protected abstract DoubleDataStore |
AbstractDBOutlier.computeOutlierScores(Database database,
Relation<O> relation,
double d)
computes an outlier score for each object of the database.
|
OutlierResult |
ReferenceBasedOutlierDetection.run(Database database,
Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.
|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
|
OutlierResult |
LocalIsolationCoefficient.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
HilOut.run(Database database,
Relation<O> relation) |
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelKNNWeightOutlier.run(Database database,
Relation<O> relation)
Run the parallel kNN weight outlier detector.
|
OutlierResult |
ParallelKNNOutlier.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
IntrinsicDimensionalityOutlier.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
IDOS.run(Database database,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private Pair<Pair<KNNQuery<O>,KNNQuery<O>>,Pair<RKNNQuery<O>,RKNNQuery<O>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
protected Pair<KNNQuery<O>,KNNQuery<O>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
private Pair<KNNQuery<O>,KNNQuery<O>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
OutlierResult |
VarianceOfVolume.run(Database database,
Relation<O> relation)
Runs the VOV algorithm on the given database.
|
OutlierResult |
SimplifiedLOF.run(Database database,
Relation<O> relation)
Run the Simple LOF algorithm.
|
OutlierResult |
SimpleKernelDensityLOF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
OnlineLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database.
|
OutlierResult |
LOF.run(Database database,
Relation<O> relation)
Runs the LOF algorithm on the given database.
|
OutlierResult |
LOCI.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
LDOF.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
LDF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
KDEOS.run(Database database,
Relation<O> rel)
Run the KDEOS outlier detection algorithm.
|
OutlierResult |
INFLO.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
FlexibleLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress) . |
OutlierResult |
COF.run(Database database,
Relation<O> relation)
Runs the COF algorithm on the given database.
|
OutlierResult |
ALOCI.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelSimplifiedLOF.run(Database database,
Relation<O> relation) |
OutlierResult |
ParallelLOF.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SimpleOutlierEnsemble.run(Database database) |
OutlierResult |
RescaleMetaOutlierAlgorithm.run(Database database) |
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector> relation)
Run the algorithm on a data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Run the algorithm.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
CTLuMedianMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuMeanMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector> relationy)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Database database,
Relation<? extends O> relation)
Method to load the external neighbors.
|
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Database database,
Relation<?> relation) |
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Database database,
Relation<?> relation)
Method to load the external neighbors.
|
Modifier and Type | Method and Description |
---|---|
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Database database,
Relation<? extends O> relation) |
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutRankS1.run(Database database) |
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialGeneratedOutlier.run(Database database) |
OutlierResult |
ByLabelOutlier.run(Database database) |
Modifier and Type | Method and Description |
---|---|
HistogramResult<DoubleVector> |
EvaluateRankingQuality.run(Database database) |
HistogramResult<DoubleVector> |
DistanceStatisticsWithClasses.run(Database database) |
Result |
AddSingleScale.run(Database database) |
Result |
HopkinsStatisticClusteringTendency.run(Database database,
Relation<NumberVector> relation)
Runs the algorithm in the timed evaluation part.
|
HistogramResult<DoubleVector> |
RankingQualityHistogram.run(Database database,
Relation<O> relation)
Process a database
|
Result |
EstimateIntrinsicDimensionality.run(Database database,
Relation<O> relation) |
Result |
DistanceQuantileSampler.run(Database database,
Relation<O> rel) |
EvaluateRetrievalPerformance.RetrievalPerformanceResult |
EvaluateRetrievalPerformance.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
CollectionResult<DoubleVector> |
AveragePrecisionAtK.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
Result |
RangeQuerySelectivity.run(Database database,
Relation<V> relation) |
Modifier and Type | Field and Description |
---|---|
private Database |
JSONWebServer.db
The database we use for obtaining object bundles.
|
Modifier and Type | Interface and Description |
---|---|
interface |
UpdatableDatabase
Database API with updates.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDatabase
Abstract base class for database API implementations.
|
class |
HashmapDatabase
Database storing data using hashtable storage, and thus allowing additional
and removal of objects.
|
class |
ProxyDatabase
A proxy database to use e.g. for projections and partitions.
|
class |
StaticArrayDatabase
This database class uses array-based storage and thus does not allow for
dynamic insert, delete and update operations.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Database |
AbstractDatabase.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
static <O> DistanceQuery<O> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
static <O> KNNQuery<O> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O> RangeQuery<O> |
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a range query object for the given distance function for radius-based
neighbor search.
|
static <O> SimilarityQuery<O> |
QueryUtil.getSimilarityQuery(Database database,
SimilarityFunction<? super O> similarityFunction,
Object... hints)
Get a similarity query, automatically choosing a relation.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Database database)
Constructor, proxying all relations of an existing database.
|
Modifier and Type | Method and Description |
---|---|
protected void |
EvaluateClustering.evaluteResult(Database db,
Clustering<?> c,
Clustering<?> refc)
Evaluate a clustering result.
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
ExtractFlatClusteringFromHierarchyEvaluator.DummyHierarchicalClusteringAlgorithm.run(Database db) |
Modifier and Type | Method and Description |
---|---|
double |
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSquaredErrors.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluatePBMIndex.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDaviesBouldin.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateConcordantPairs.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateCIndex.evaluateClustering(Database db,
Relation<? extends O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSilhouette.evaluateClustering(Database db,
Relation<O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
Modifier and Type | Method and Description |
---|---|
HistogramResult<DoubleVector> |
ComputeOutlierHistogram.evaluateOutlierResult(Database database,
OutlierResult or)
Evaluate a single outlier result as histogram.
|
Modifier and Type | Method and Description |
---|---|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier)
Find the first database result in the tree.
|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier,
Result baseResult)
Find the first database result in the tree.
|
Modifier and Type | Method and Description |
---|---|
static void |
ResultUtil.ensureClusteringResult(Database db,
Result result)
Ensure that the result contains at least one Clustering.
|
static SelectionResult |
ResultUtil.ensureSelectionResult(Database db)
Ensure that there also is a selection container object.
|
private void |
KMLOutputHandler.writeClusteringResult(XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
private void |
KMLOutputHandler.writeOutlierResult(XMLStreamWriter xmlw,
OutlierResult outlierResult,
Database database) |
Modifier and Type | Method and Description |
---|---|
void |
TextWriter.output(Database db,
Result r,
StreamFactory streamOpener,
Pattern filter)
Stream output.
|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBIDRef objID,
List<Relation<?>> ra) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
List<Relation<?>> ra) |
Modifier and Type | Method and Description |
---|---|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Database database)
Retrieves all class labels within the database.
|
static ArrayModifiableDBIDs |
DatabaseUtil.getObjectsByLabelMatch(Database database,
Pattern name_pattern)
Find object by matching their labels.
|
static Relation<String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels.
|
static Relation<String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
int k)
Get (or create) a precomputed kNN query for the database.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceQuery<O> dq,
int k)
Get (or create) a precomputed kNN query for the database.
|
Modifier and Type | Method and Description |
---|---|
static String |
VisualizerParameterizer.getTitle(Database db,
Result result)
Try to automatically generate a title for this.
|
Modifier and Type | Field and Description |
---|---|
private Database |
InputStep.database
Holds the database to have the algorithms run with.
|
protected Database |
InputStep.Parameterizer.database
Holds the database to have the algorithms run on.
|
Modifier and Type | Method and Description |
---|---|
Database |
InputStep.getDatabase()
Get the database to use.
|
Modifier and Type | Method and Description |
---|---|
Result |
AlgorithmStep.runAlgorithms(Database database)
Run algorithms.
|
void |
EvaluationStep.runEvaluators(ResultHierarchy hier,
Database db) |
void |
OutputStep.runResultHandlers(ResultHierarchy hier,
Database db)
Run the result handlers.
|
Constructor and Description |
---|
InputStep(Database database)
Constructor.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.