See: Description
Interface | Description |
---|---|
KMeansInitialization<V extends NumberVector> |
Interface for initializing K-Means
|
KMedoidsInitialization<V> |
Interface for initializing K-Medoids.
|
Class | Description |
---|---|
AbstractKMeansInitialization<V extends NumberVector> |
Abstract base class for common k-means initializations.
|
AbstractKMeansInitialization.Parameterizer |
Parameterization class.
|
FarthestPointsInitialMeans<O> |
K-Means initialization by repeatedly choosing the farthest point (by the
minimum distance to earlier points).
|
FarthestPointsInitialMeans.Parameterizer<O> |
Parameterization class.
|
FarthestSumPointsInitialMeans<O> |
K-Means initialization by repeatedly choosing the farthest point (by the
sum of distances to previous objects).
|
FarthestSumPointsInitialMeans.Parameterizer<V> |
Parameterization class.
|
FirstKInitialMeans<O> |
Initialize K-means by using the first k objects as initial means.
|
FirstKInitialMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansPlusPlusInitialMeans<O> |
K-Means++ initialization for k-means.
|
KMeansPlusPlusInitialMeans.Parameterizer<V> |
Parameterization class.
|
PAMInitialMeans<O> |
PAM initialization for k-means (and of course, PAM).
|
PAMInitialMeans.Parameterizer<V> |
Parameterization class.
|
PredefinedInitialMeans |
Run k-means with prespecified initial means.
|
PredefinedInitialMeans.Parameterizer |
Parameterization class.
|
RandomlyChosenInitialMeans<O> |
Initialize K-means by randomly choosing k existing elements as cluster
centers.
|
RandomlyChosenInitialMeans.Parameterizer<V> |
Parameterization class.
|
RandomlyGeneratedInitialMeans |
Initialize k-means by generating random vectors (within the data sets value
range).
|
RandomlyGeneratedInitialMeans.Parameterizer |
Parameterization class.
|
SampleKMeansInitialization<V extends NumberVector> |
Initialize k-means by running k-means on a sample of the data set only.
|
SampleKMeansInitialization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.