See: Description
Interface | Description |
---|---|
KMeans<V extends NumberVector,M extends Model> |
Some constants and options shared among kmeans family algorithms.
|
Class | Description |
---|---|
AbstractKMeans<V extends NumberVector,M extends Model> |
Abstract base class for k-means implementations.
|
AbstractKMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel> |
Run K-Means multiple times, and keep the best run.
|
BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
CLARA<V> |
Clustering Large Applications (CLARA) is a clustering method for large data
sets based on PAM, partitioning around medoids (
KMedoidsPAM ) based on
sampling. |
CLARA.Parameterizer<V> |
Parameterization class.
|
KMeansBatchedLloyd<V extends NumberVector> |
An algorithm for k-means, using Lloyd-style bulk iterations.
|
KMeansBatchedLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansBisecting<V extends NumberVector,M extends MeanModel> |
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
KMeansElkan<V extends NumberVector> |
Elkan's fast k-means by exploiting the triangle inequality.
|
KMeansElkan.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansHamerly<V extends NumberVector> |
Hamerly's fast k-means by exploiting the triangle inequality.
|
KMeansHamerly.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansHybridLloydMacQueen<V extends NumberVector> |
A hybrid k-means algorithm, alternating between MacQueen-style incremental
processing and Lloyd-Style batch steps.
|
KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansLloyd<V extends NumberVector> |
The standard k-means algorithm, using Lloyd-style bulk iterations.
|
KMeansLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansMacQueen<V extends NumberVector> |
The original k-means algorithm, using MacQueen style incremental updates;
making this effectively an "online" (streaming) algorithm.
|
KMeansMacQueen.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMediansLloyd<V extends NumberVector> |
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
of the more complicated approach suggested by Kaufman and Rousseeuw (see
KMedoidsPAM instead). |
KMediansLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMedoidsEM<V> |
A k-medoids clustering algorithm, implemented as EM-style bulk algorithm.
|
KMedoidsEM.Parameterizer<V> |
Parameterization class.
|
KMedoidsPAM<V> |
The original PAM algorithm or k-medoids clustering, as proposed by Kaufman
and Rousseeuw in "Partitioning Around Medoids".
|
KMedoidsPAM.Parameterizer<V> |
Parameterization class.
|
SingleAssignmentKMeans<V extends NumberVector> |
Pseudo-k-Means variations, that assigns each object to the nearest center.
|
SingleAssignmentKMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
XMeans<V extends NumberVector,M extends MeanModel> |
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
XMeans.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
K-means clustering and variations.
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.