Interface | Description |
---|---|
ClusteringAlgorithm<C extends Clustering<? extends Model>> |
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Class | Description |
---|---|
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector> | |
AbstractProjectedClustering.Parameterizer |
Parameterization class.
|
CanopyPreClustering<O> |
Canopy pre-clustering is a simple preprocessing step for clustering.
|
CanopyPreClustering.Parameterizer<O> |
Parameterization class
|
ClusteringAlgorithmUtil |
Utility functionality for writing clustering algorithms.
|
DBSCAN<O> |
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
find density-connected sets in a database.
|
DBSCAN.Parameterizer<O> |
Parameterization class.
|
NaiveMeanShiftClustering<V extends NumberVector> |
Mean-shift based clustering algorithm.
|
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector> |
Parameterizer.
|
SNNClustering<O> |
Shared nearest neighbor clustering.
|
SNNClustering.Parameterizer<O> |
Parameterization class.
|
Clustering algorithms.
Clustering algorithms are supposed to implement theAlgorithm
-Interface.
The more specialized interface ClusteringAlgorithm
requires an implementing algorithm to provide a special result class suitable as a partitioning of the database.
More relaxed clustering algorithms are allowed to provide a result that is a fuzzy clustering, does not
partition the database complete or is in any other sense a relaxed clustering result.de.lmu.ifi.dbs.elki.algorithm
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.