O
- the type of Object the algorithm is applied on@Title(value="SNN: Shared Nearest Neighbor Clustering") @Description(value="Algorithm to find shared-nearest-neighbors-density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="L. Ert\u00f6z, M. Steinbach, V. Kumar", title="Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data", booktitle="Proc. of SIAM Data Mining (SDM), 2003", url="http://www.siam.org/meetings/sdm03/proceedings/sdm03_05.pdf") public class SNNClustering<O> extends AbstractAlgorithm<Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
Shared nearest neighbor clustering.
Reference: L. Ertöz, M. Steinbach, V. Kumar: Finding Clusters of Different
Sizes, Shapes, and Densities in Noisy, High Dimensional Data.
In: Proc. of SIAM Data Mining (SDM), 2003.
Modifier and Type | Class and Description |
---|---|
static class |
SNNClustering.Parameterizer<O>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private int |
epsilon
Epsilon radius threshold.
|
private static Logging |
LOG
The logger for this class.
|
private int |
minpts
Minimum number of clusters for connectedness.
|
protected ModifiableDBIDs |
noise
Holds a set of noise.
|
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids.
|
protected List<ModifiableDBIDs> |
resultList
Holds a list of clusters found.
|
private SharedNearestNeighborSimilarityFunction<O> |
similarityFunction
The similarity function for the shared nearest neighbor similarity.
|
Constructor and Description |
---|
SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction,
int epsilon,
int minpts)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected void |
expandCluster(SimilarityQuery<O> snnInstance,
DBIDRef startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster adapted to SNN criterion.
|
protected ArrayModifiableDBIDs |
findSNNNeighbors(SimilarityQuery<O> snnInstance,
DBIDRef queryObject)
Returns the shared nearest neighbors of the specified query object in the
given database.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<Model> |
run(Database database,
Relation<O> relation)
Perform SNN clustering
|
makeParameterDistanceFunction, run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
private int epsilon
private int minpts
protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
private SharedNearestNeighborSimilarityFunction<O> similarityFunction
public SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction, int epsilon, int minpts)
similarityFunction
- Similarity functionepsilon
- Epsilonminpts
- Minptspublic Clustering<Model> run(Database database, Relation<O> relation)
database
- Databaserelation
- Relationprotected ArrayModifiableDBIDs findSNNNeighbors(SimilarityQuery<O> snnInstance, DBIDRef queryObject)
snnInstance
- shared nearest neighborsqueryObject
- the query objectprotected void expandCluster(SimilarityQuery<O> snnInstance, DBIDRef startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
snnInstance
- shared nearest neighborsstartObjectID
- potential seed of a new potential clusterobjprog
- the progress object to report about the progress of
clusteringpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Clustering<Model>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<Model>>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.