See: Description
Class | Description |
---|---|
AbstractDistanceBasedSpatialOutlier<N,O> |
Abstract base class for distance-based spatial outlier detection methods.
|
AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O> |
Parameterization class.
|
AbstractNeighborhoodOutlier<O> |
Abstract base class for spatial outlier detection methods using a spatial
neighborhood.
|
AbstractNeighborhoodOutlier.Parameterizer<O> |
Parameterization class.
|
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector> |
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector> |
Parameterization class
|
CTLuMeanMultipleAttributes<N,O extends NumberVector> |
Mean Approach is used to discover spatial outliers with multiple attributes.
|
CTLuMeanMultipleAttributes.Parameterizer<N,O extends NumberVector> |
Parameterization class.
|
CTLuMedianAlgorithm<N> |
Median Algorithm of C.
|
CTLuMedianAlgorithm.Parameterizer<N> |
Parameterization class.
|
CTLuMedianMultipleAttributes<N,O extends NumberVector> |
Median Approach is used to discover spatial outliers with multiple
attributes.
|
CTLuMedianMultipleAttributes.Parameterizer<N,O extends NumberVector> |
Parameterization class.
|
CTLuMoranScatterplotOutlier<N> |
Moran scatterplot outliers, based on the standardized deviation from the
local and global means.
|
CTLuMoranScatterplotOutlier.Parameterizer<N> |
Parameterization class.
|
CTLuRandomWalkEC<P> |
Spatial outlier detection based on random walks.
|
CTLuRandomWalkEC.Parameterizer<N> |
Parameterization class.
|
CTLuScatterplotOutlier<N> |
Scatterplot-outlier is a spatial outlier detection method that performs a
linear regression of object attributes and their neighbors average value.
|
CTLuScatterplotOutlier.Parameterizer<N> |
Parameterization class.
|
CTLuZTestOutlier<N> |
Detect outliers by comparing their attribute value to the mean and standard
deviation of their neighborhood.
|
CTLuZTestOutlier.Parameterizer<N> |
Parameterization class.
|
SLOM<N,O> |
SLOM: a new measure for local spatial outliers
Reference:
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
SLOM.Parameterizer<N,O> |
Parameterization class.
|
SOF<N,O> |
The Spatial Outlier Factor (SOF) is a spatial
LOF variation. |
SOF.Parameterizer<N,O> |
Parameterization class
|
TrimmedMeanApproach<N> |
A Trimmed Mean Approach to Finding Spatial Outliers.
|
TrimmedMeanApproach.Parameterizer<N> |
Parameterizer.
|
Spatial outlier detection algorithms
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.