See: Description
Interface | Description |
---|---|
EMClusterModel<M extends MeanModel> |
Models useable in EM clustering.
|
EMClusterModelFactory<V extends NumberVector,M extends MeanModel> |
Factory for initializing the EM models.
|
Class | Description |
---|---|
AbstractEMModelFactory<V extends NumberVector,M extends MeanModel> |
Abstract base class for initializing EM.
|
AbstractEMModelFactory.Parameterizer<V extends NumberVector> |
Parameterization class.
|
DiagonalGaussianModel |
Simpler model for a single Gaussian cluster, without covariances.
|
DiagonalGaussianModelFactory<V extends NumberVector> |
Factory for EM with multivariate gaussian models using diagonal matrixes.
|
DiagonalGaussianModelFactory.Parameterizer<V extends NumberVector> |
Parameterization class
|
EM<V extends NumberVector,M extends MeanModel> |
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM).
|
EM.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
MultivariateGaussianModel |
Model for a single Gaussian cluster.
|
MultivariateGaussianModelFactory<V extends NumberVector> |
Factory for EM with multivariate gaussian models (with covariance; also known
as Gaussian Mixture Modeling, GMM).
|
MultivariateGaussianModelFactory.Parameterizer<V extends NumberVector> |
Parameterization class
|
SphericalGaussianModel |
Simple spherical Gaussian cluster.
|
SphericalGaussianModelFactory<V extends NumberVector> |
Factory for EM with multivariate gaussian models using diagonal matrixes.
|
SphericalGaussianModelFactory.Parameterizer<V extends NumberVector> |
Parameterization class
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.