O
- Object type@Title(value="HDBSCAN: Hierarchical Density-Based Spatial Clustering of Applications with Noise") @Description(value="Density-Based Clustering Based on Hierarchical Density Estimates") @Reference(authors="R. J. G. B. Campello, D. Moulavi, and J. Sander", title="Density-Based Clustering Based on Hierarchical Density Estimates", booktitle="Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD", url="http://dx.doi.org/10.1007/978-3-642-37456-2_14") public class HDBSCANLinearMemory<O> extends AbstractHDBSCAN<O,PointerDensityHierarchyRepresentationResult> implements HierarchicalClusteringAlgorithm
SLINKHDBSCANLinearMemory
, by computing the minimum spanning tree
using Prim's algorithm (instead of SLINK; although the two are remarkably
similar). In order to produce the preferred internal format of hierarchical
clusterings (the compact pointer representation introduced in SLINK
)
we have to perform a postprocessing conversion.
This implementation does not include the cluster extraction
discussed as Step 4. This functionality should however already be provided by
ExtractFlatClusteringFromHierarchy
. For this reason, we also do
not include self-edges.
Reference:
R. J. G. B. Campello, D. Moulavi, and J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD
Modifier and Type | Class and Description |
---|---|
static class |
HDBSCANLinearMemory.Parameterizer<O>
Parameterization class
|
AbstractHDBSCAN.HDBSCANAdapter, AbstractHDBSCAN.HeapMSTCollector
Modifier and Type | Field and Description |
---|---|
private static Logging |
LOG
Class logger.
|
minPts
DISTANCE_FUNCTION_ID
Constructor and Description |
---|
HDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction,
int minPts)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
PointerDensityHierarchyRepresentationResult |
run(Database db,
Relation<O> relation)
Run the algorithm
|
computeCoreDists, convertToPointerRepresentation
getDistanceFunction
makeParameterDistanceFunction, run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
public HDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction, int minPts)
distanceFunction
- Distance functionminPts
- Minimum number of points for densitypublic PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation)
db
- Databaserelation
- Relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractHDBSCAN<O,PointerDensityHierarchyRepresentationResult>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<PointerDensityHierarchyRepresentationResult>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.