
public class ComputeOutlierHistogram extends Object implements Evaluator
-hist.positive specifies the class label of "positive"
 hits.| Modifier and Type | Class and Description | 
|---|---|
| static class  | ComputeOutlierHistogram.ParameterizerParameterization class. | 
| Modifier and Type | Field and Description | 
|---|---|
| private int | binsNumber of bins | 
| static OptionID | BINS_IDnumber of bins for the histogram
 
 Default value:  EuclideanDistanceFunctionKey:-comphist.bins | 
| static OptionID | POSITIVE_CLASS_NAME_IDThe object pattern to identify positive classes
 
 Key:  -comphist.positive | 
| private Pattern | positiveClassNameStores the "positive" class. | 
| private ScalingFunction | scalingScaling function to use | 
| static OptionID | SCALING_IDParameter to specify a scaling function to use. | 
| private boolean | splitfreqFlag to make split frequencies | 
| static OptionID | SPLITFREQ_IDFlag to count frequencies of outliers and non-outliers separately
 
 Key:  -histogram.splitfreq | 
| Constructor and Description | 
|---|
| ComputeOutlierHistogram(Pattern positive_class_name,
                       int bins,
                       ScalingFunction scaling,
                       boolean splitfreq)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| HistogramResult<DoubleVector> | evaluateOutlierResult(Database database,
                     OutlierResult or)Evaluate a single outlier result as histogram. | 
| void | processNewResult(ResultHierarchy hier,
                Result newResult)Process a result. | 
public static final OptionID POSITIVE_CLASS_NAME_ID
 Key: -comphist.positive
 
public static final OptionID BINS_ID
 Default value: EuclideanDistanceFunction
 
 Key: -comphist.bins
 
public static final OptionID SCALING_ID
 Key: -comphist.scaling
 
public static final OptionID SPLITFREQ_ID
 Key: -histogram.splitfreq
 
private Pattern positiveClassName
private int bins
private ScalingFunction scaling
private boolean splitfreq
public ComputeOutlierHistogram(Pattern positive_class_name, int bins, ScalingFunction scaling, boolean splitfreq)
positive_class_name - Class namebins - Binsscaling - Scalingsplitfreq - Scale inlier and outlier frequencies independentlypublic HistogramResult<DoubleVector> evaluateOutlierResult(Database database, OutlierResult or)
database - Database to processor - Outlier resultpublic void processNewResult(ResultHierarchy hier, Result newResult)
ResultProcessorprocessNewResult in interface ResultProcessorhier - The base of the result tree.newResult - Newly added result subtree.Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.