public class ComputeOutlierHistogram extends Object implements Evaluator
-hist.positive
specifies the class label of "positive"
hits.Modifier and Type | Class and Description |
---|---|
static class |
ComputeOutlierHistogram.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private int |
bins
Number of bins
|
static OptionID |
BINS_ID
number of bins for the histogram
Default value:
EuclideanDistanceFunction
Key: -comphist.bins
|
static OptionID |
POSITIVE_CLASS_NAME_ID
The object pattern to identify positive classes
Key:
-comphist.positive
|
private Pattern |
positiveClassName
Stores the "positive" class.
|
private ScalingFunction |
scaling
Scaling function to use
|
static OptionID |
SCALING_ID
Parameter to specify a scaling function to use.
|
private boolean |
splitfreq
Flag to make split frequencies
|
static OptionID |
SPLITFREQ_ID
Flag to count frequencies of outliers and non-outliers separately
Key:
-histogram.splitfreq
|
Constructor and Description |
---|
ComputeOutlierHistogram(Pattern positive_class_name,
int bins,
ScalingFunction scaling,
boolean splitfreq)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
HistogramResult<DoubleVector> |
evaluateOutlierResult(Database database,
OutlierResult or)
Evaluate a single outlier result as histogram.
|
void |
processNewResult(ResultHierarchy hier,
Result newResult)
Process a result.
|
public static final OptionID POSITIVE_CLASS_NAME_ID
Key: -comphist.positive
public static final OptionID BINS_ID
Default value: EuclideanDistanceFunction
Key: -comphist.bins
public static final OptionID SCALING_ID
Key: -comphist.scaling
public static final OptionID SPLITFREQ_ID
Key: -histogram.splitfreq
private Pattern positiveClassName
private int bins
private ScalingFunction scaling
private boolean splitfreq
public ComputeOutlierHistogram(Pattern positive_class_name, int bins, ScalingFunction scaling, boolean splitfreq)
positive_class_name
- Class namebins
- Binsscaling
- Scalingsplitfreq
- Scale inlier and outlier frequencies independentlypublic HistogramResult<DoubleVector> evaluateOutlierResult(Database database, OutlierResult or)
database
- Database to processor
- Outlier resultpublic void processNewResult(ResultHierarchy hier, Result newResult)
ResultProcessor
processNewResult
in interface ResultProcessor
hier
- The base of the result tree.newResult
- Newly added result subtree.Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.