V
- the type of FeatureVector handled by this Algorithm@Title(value="EAFOD: the evolutionary outlier detection algorithm") @Description(value="Outlier detection for high dimensional data") @Reference(authors="C.C. Aggarwal, P. S. Yu", title="Outlier detection for high dimensional data", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2001), Santa Barbara, CA, 2001", url="http://dx.doi.org/10.1145/375663.375668") public class AggarwalYuEvolutionary<V extends NumberVector> extends AbstractAggarwalYuOutlier<V>
Reference:
Outlier detection for high dimensional data
C.C. Aggarwal, P. S. Yu
Proceedings of the 2001 ACM SIGMOD international conference on Management of
data 2001, Santa Barbara, California, United States
Modifier and Type | Class and Description |
---|---|
private class |
AggarwalYuEvolutionary.EvolutionarySearch
The inner class to handle the actual evolutionary computation.
|
private static class |
AggarwalYuEvolutionary.Individuum
Individuum for the evolutionary search.
|
static class |
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected static double |
CONVERGENCE
At which gene homogenity do we have convergence?
|
private static Logging |
LOG
The logger for this class.
|
private int |
m
Holds the value of
AggarwalYuEvolutionary.Parameterizer.M_ID . |
protected static int |
MAX_ITERATIONS
Maximum iteration count for evolutionary search.
|
private RandomFactory |
rnd
Random generator.
|
DONT_CARE, GENE_OFFSET, k, phi
Constructor and Description |
---|
AggarwalYuEvolutionary(int k,
int phi,
int m,
RandomFactory rnd)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
OutlierResult |
run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
buildRanges, computeSubspace, computeSubspaceForGene, getInputTypeRestriction, sparsity
makeParameterDistanceFunction, run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
protected static final int MAX_ITERATIONS
protected static final double CONVERGENCE
private int m
AggarwalYuEvolutionary.Parameterizer.M_ID
.private RandomFactory rnd
public AggarwalYuEvolutionary(int k, int phi, int m, RandomFactory rnd)
k
- Kphi
- Phim
- Mrnd
- Random generatorpublic OutlierResult run(Database database, Relation<V> relation)
database
- Databaserelation
- Relationprotected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.