| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the  KDDTaskmain routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected clustering algorithms or
 subspace clustering algorithms according to the classical but somewhat obsolete classification schema
 of clustering algorithms for axis-parallel subspaces. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings
 
 These methods are mostly useful for providing a reference result in evaluation. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | Subspace outlier detection methods. | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) | 
| de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data | 
| de.lmu.ifi.dbs.elki.datasource | Data normalization (and reconstitution) of data sets. | 
| de.lmu.ifi.dbs.elki.datasource.filter | Data filtering, in particular for normalization and projection. | 
| de.lmu.ifi.dbs.elki.datasource.parser | Parsers for different file formats and data types. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.external | Distance functions using external data sources. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.snn | Indexes providing nearest neighbor sets | 
| de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. | 
| de.lmu.ifi.dbs.elki.result | Result types, representation and handling | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | APRIORIProvides the APRIORI algorithm for Mining Association Rules. | 
| class  | DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
 Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. | 
| class  | DummyAlgorithm<O extends NumberVector<?>>Dummy algorithm, which just iterates over all points once, doing a 10NN query
 each. | 
| class  | KNNDistanceOrder<O,D extends Distance<D>>Provides an order of the kNN-distances for all objects within the database. | 
| class  | KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>Joins in a given spatial database to each object its k-nearest neighbors. | 
| class  | MaterializeDistances<O,D extends NumberDistance<D,?>>Algorithm to materialize all the distances in a data set. | 
| class  | NullAlgorithmNull Algorithm, which does nothing. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DBSCAN<O,D extends Distance<D>>DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. | 
| class  | DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. | 
| class  | EM<V extends NumberVector<?>>Provides the EM algorithm (clustering by expectation maximization). | 
| class  | OPTICS<O,D extends Distance<D>>OPTICS provides the OPTICS algorithm. | 
| class  | SLINK<O,D extends Distance<D>>Implementation of the efficient Single-Link Algorithm SLINK of R. | 
| class  | SNNClustering<O>
 Shared nearest neighbor clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CASH<V extends NumberVector<?>>Provides the CASH algorithm, an subspace clustering algorithm based on the
 Hough transform. | 
| class  | COPAC<V extends NumberVector<?>,D extends Distance<D>>Provides the COPAC algorithm, an algorithm to partition a database according
 to the correlation dimension of its objects and to then perform an arbitrary
 clustering algorithm over the partitions. | 
| class  | ERiC<V extends NumberVector<?>>Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. | 
| class  | FourC<V extends NumberVector<?>>4C identifies local subgroups of data objects sharing a uniform correlation. | 
| class  | HiCO<V extends NumberVector<?>>Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
 of correlation clusters. | 
| class  | ORCLUS<V extends NumberVector<?>>ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
 dimensional spaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using Lloyd-style bulk iterations. | 
| class  | KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using MacQueen style incremental updates. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CLIQUE<V extends NumberVector<?>>
 Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. | 
| class  | DiSH<V extends NumberVector<?>>
 Algorithm for detecting subspace hierarchies. | 
| class  | HiSC<V extends NumberVector<?>>Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
 of subspace clusters. | 
| class  | PreDeCon<V extends NumberVector<?>>
 PreDeCon computes clusters of subspace preference weighted connected points. | 
| class  | PROCLUS<V extends NumberVector<?>>
 Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
 high dimensional spaces. | 
| class  | SUBCLU<V extends NumberVector<?>>
 Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelClusteringPseudo clustering using labels. | 
| class  | ByLabelHierarchicalClusteringPseudo clustering using labels. | 
| class  | ByModelClusteringPseudo clustering using annotated models. | 
| class  | TrivialAllInOneTrivial pseudo-clustering that just considers all points to be one big
 cluster. | 
| class  | TrivialAllNoiseTrivial pseudo-clustering that just considers all points to be noise. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ABOD<V extends NumberVector<?>>Angle-Based Outlier Detection
 
 Outlier detection using variance analysis on angles, especially for high
 dimensional data sets. | 
| class  | AggarwalYuEvolutionary<V extends NumberVector<?>>EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
 detect outliers for high dimensional data. | 
| class  | AggarwalYuNaive<V extends NumberVector<?>>BruteForce provides a naive brute force algorithm in which all k-subsets of
 dimensions are examined and calculates the sparsity coefficient to find
 outliers. | 
| class  | ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "approximate Local Correlation Integral". | 
| class  | DBOutlierDetection<O,D extends Distance<D>>Simple distanced based outlier detection algorithm. | 
| class  | DBOutlierScore<O,D extends Distance<D>>Compute percentage of neighbors in the given neighborhood with size d. | 
| class  | EMOutlier<V extends NumberVector<?>>outlier detection algorithm using EM Clustering. | 
| class  | GaussianModel<V extends NumberVector<?>>Outlier have smallest GMOD_PROB: the outlier scores is the
 probability density of the assumed distribution. | 
| class  | GaussianUniformMixture<V extends NumberVector<?>>Outlier detection algorithm using a mixture model approach. | 
| class  | HilOut<O extends NumberVector<?>>Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. | 
| class  | INFLO<O,D extends NumberDistance<D,?>>INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. | 
| class  | KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. | 
| class  | KNNWeightOutlier<O,D extends NumberDistance<D,?>>Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. | 
| class  | LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. | 
| class  | LOCI<O,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "Local Correlation Integral". | 
| class  | LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  LOF.K_ID(-lof.k). | 
| class  | LoOP<O,D extends NumberDistance<D,?>>LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. | 
| class  | OPTICSOF<O,D extends NumberDistance<D,?>>OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. | 
| class  | ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HiCS<V extends NumberVector<?>>Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CTLuMoranScatterplotOutlier<N>Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. | 
| class  | CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>Spatial outlier detection based on random walks. | 
| class  | CTLuScatterplotOutlier<N>Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. | 
| class  | CTLuZTestOutlier<N>Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. | 
| class  | SLOM<N,O,D extends NumberDistance<D,?>>SLOM: a new measure for local spatial outliers
 
 
 Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. | 
| class  | TrimmedMeanApproach<N>A Trimmed Mean Approach to Finding Spatial Outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OutRankS1OutRank: ranking outliers in high dimensional data. | 
| class  | SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>Subspace Outlier Degree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AddSingleScalePseudo "algorithm" that computes the global min/max for a relation across all
 attributes. | 
| class  | DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>Algorithm to gather statistics over the distance distribution in the data
 set. | 
| class  | EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| class  | RankingQualityHistogram<O,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HashmapDatabaseProvides a mapping for associations based on a Hashtable and functions to get
 the next usable ID for insertion, making IDs reusable after deletion of the
 entry. | 
| class  | StaticArrayDatabaseThis database class uses array-based storage and thus does not allow for
 dynamic insert, delete and update operations. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DBIDRangeDatabaseConnectionThis is a fake datasource that produces a static DBID range only. | 
| class  | EmptyDatabaseConnectionPseudo database that is empty. | 
| class  | InputStreamDatabaseConnectionProvides a database connection expecting input from an input stream such as
 stdin. | 
| class  | PresortedBlindJoinDatabaseConnectionJoins multiple data sources by their existing order. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HistogramJitterFilter<V extends NumberVector<?>>Add Jitter, preserving the histogram properties (same sum, nonnegative). | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BitVectorLabelParserProvides a parser for parsing one BitVector per line, bits separated by
 whitespace. | 
| class  | SparseBitVectorLabelParserProvides a parser for parsing one sparse BitVector per line, where the
 indices of the one-bits are separated by whitespace. | 
| class  | SparseFloatVectorLabelParserDeprecated. 
 Use  SparseNumberVectorLabelParserinstead! | 
| class  | SparseNumberVectorLabelParser<V extends SparseNumberVector<?>>
 Provides a parser for parsing one point per line, attributes separated by
 whitespace. | 
| class  | TermFrequencyParser<V extends SparseNumberVector<?>>A parser to load term frequency data, which essentially are sparse vectors
 with text keys. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HistogramIntersectionDistanceFunctionIntersection distance for color histograms. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DiskCacheBasedDoubleDistanceFunctionProvides a DistanceFunction that is based on double distances given by a
 distance matrix of an external file. | 
| class  | DiskCacheBasedFloatDistanceFunctionProvides a DistanceFunction that is based on float distances given by a
 distance matrix of an external file. | 
| class  | FileBasedDoubleDistanceFunctionProvides a DistanceFunction that is based on double distances given by a
 distance matrix of an external file. | 
| class  | FileBasedFloatDistanceFunctionProvides a DistanceFunction that is based on float distances given by a
 distance matrix of an external file. | 
| class  | NumberDistanceParser<D extends NumberDistance<D,?>>Provides a parser for parsing one distance value per line. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MaterializeKNNAndRKNNPreprocessor<O,D extends Distance<D>>A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. | 
| class  | MaterializeKNNPreprocessor<O,D extends Distance<D>>A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. | 
| class  | MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry<D>>A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. | 
| class  | PartitionApproximationMaterializeKNNPreprocessor<O,D extends Distance<D>>A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. | 
| class  | SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractFilteredPCAIndex<NV extends NumberVector<?>>Abstract base class for a local PCA based index. | 
| class  | KNNQueryFilteredPCAIndex<NV extends NumberVector<?>>Provides the local neighborhood to be considered in the PCA as the k nearest
 neighbors of an object. | 
| class  | RangeQueryFilteredPCAIndex<NV extends NumberVector<?>>Provides the local neighborhood to be considered in the PCA as the neighbors
 within an epsilon range query of an object. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DiSHPreferenceVectorIndex<V extends NumberVector<?>>Preprocessor for DiSH preference vector assignment to objects of a certain
 database. | 
| class  | HiSCPreferenceVectorIndex<V extends NumberVector<?>>Preprocessor for HiSC preference vector assignment to objects of a certain
 database. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SharedNearestNeighborPreprocessor<O,D extends Distance<D>>A preprocessor for annotation of the ids of nearest neighbors to each
 database object. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractSubspaceProjectionIndex<NV extends NumberVector<?>,D extends Distance<D>,P extends ProjectionResult>Abstract base class for a local PCA based index. | 
| class  | FourCSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>Preprocessor for 4C local dimensionality and locally weighted matrix
 assignment to objects of a certain database. | 
| class  | PreDeConSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>Preprocessor for PreDeCon local dimensionality and locally weighted matrix
 assignment to objects of a certain database. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MTree<O,D extends Distance<D>>MTree is a metrical index structure based on the concepts of the M-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | RStarTreeRStarTree is a spatial index structure based on the concepts of the R*-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | FirstNEigenPairFilterThe FirstNEigenPairFilter marks the n highest eigenpairs as strong
 eigenpairs, where n is a user specified number. | 
| class  | LimitEigenPairFilterThe LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue
 below the specified threshold (relative or absolute) as weak eigenpairs, the
 others are marked as strong eigenpairs. | 
| class  | NormalizingEigenPairFilterThe NormalizingEigenPairFilter normalizes all eigenvectors s.t. | 
| class  | PercentageEigenPairFilterThe PercentageEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. | 
| class  | ProgressiveEigenPairFilterThe ProgressiveEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. | 
| class  | RelativeEigenPairFilterThe RelativeEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and marks the first eigenpairs who are a certain factor above the
 average of the remaining eigenvalues. | 
| class  | SignificantEigenPairFilterThe SignificantEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and chooses the contrast of an Eigenvalue to the remaining
 Eigenvalues is maximal. | 
| class  | WeakEigenPairFilterThe WeakEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and returns the first eigenpairs who are above the average mark
 as "strong", the others as "weak". | 
| class  | WeightedCovarianceMatrixBuilder<V extends NumberVector<?>>CovarianceMatrixBuilderwith weights. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | LogResultStructureResultHandlerA result handler to help with ELKI development that will just show the
 structure of the result object. |