Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache builders.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.application.visualization |
Visualization applications in ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources.
|
de.lmu.ifi.dbs.elki.distance.distancevalue |
Distance values, i.e. object storing an actual distance value along with
comparison functions and value parsers.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...).
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index |
Visualizers for index structures based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
tutorial.outlier |
Modifier and Type | Class and Description |
---|---|
class |
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set.
|
static class |
MaterializeDistances.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Benchmarking algorithm that computes a range query for each point.
|
static class |
RangeQueryBenchmarkAlgorithm.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class
|
Modifier and Type | Class and Description |
---|---|
class |
NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Mean-shift based clustering algorithm.
|
static class |
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterizer.
|
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction.
|
static class |
OPTICSXi.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class.
|
private static class |
OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>>
Position when scanning for steep areas
|
Modifier and Type | Field and Description |
---|---|
(package private) D |
NaiveMeanShiftClustering.range
Range of the kernel.
|
(package private) D |
NaiveMeanShiftClustering.Parameterizer.range
Kernel radius.
|
Modifier and Type | Class and Description |
---|---|
class |
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>
K-Means++ initialization for k-means.
|
static class |
KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KMedoidsEM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
"Partitioning Around Medoids" approach.
|
static class |
KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KMedoidsPAM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using the
"Partitioning Around Medoids" approach.
|
static class |
KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
PAMInitialMeans<V,D extends NumberDistance<D,?>>
PAM initialization for k-means (and of course, PAM).
|
static class |
PAMInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "approximate Local Correlation Integral".
|
static class |
ALOCI.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. |
static class |
COP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
static class |
INFLO.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
static class |
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
static class |
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Outlier Detection with Kernel Density Functions.
|
static class |
LDF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
static class |
LDOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral".
|
static class |
LOCI.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LOF<O,D extends NumberDistance<D,?>>
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.K_ID (-lof.k ). |
static class |
LOF.LOFResult<O,D extends NumberDistance<D,?>>
Encapsulates information like the neighborhood, the LRD and LOF values of
the objects during a run of the
LOF algorithm. |
static class |
LOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
static class |
LoOP.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the
LOF Algorithm, supports insertions and
removals. |
static class |
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
static class |
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
static class |
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Algorithm to compute local correlation outlier probability.
|
static class |
SimpleCOP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
A simple variant of the LOF algorithm, which uses a simple kernel density
estimation instead of the local reachability density.
|
static class |
SimpleKernelDensityLOF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SimpleLOF<O,D extends NumberDistance<D,?>>
A simplified version of the original LOF algorithm, which does not use the
reachability distance, yielding less stable results on inliers.
|
static class |
SimpleLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private D |
LOCI.rmax
Holds the value of
LOCI.RMAX_ID . |
protected D |
LOCI.Parameterizer.rmax |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods.
|
static class |
AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
static class |
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class
|
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks.
|
static class |
CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
Reference:
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
static class |
SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
LOF variation. |
static class |
SOF.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class
|
Modifier and Type | Class and Description |
---|---|
class |
SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Subspace Outlier Degree.
|
static class |
SOD.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
AveragePrecisionAtK<V,D extends NumberDistance<D,?>>
Evaluate a distance functions performance by computing the average precision
at k, when ranking the objects by distance.
|
static class |
AveragePrecisionAtK.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
set.
|
static class |
DistanceStatisticsWithClasses.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
static class |
EvaluateRankingQuality.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
static class |
RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
for random access.
|
static class |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
for random access.
|
static class |
CacheFloatDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
ComputeKNNOutlierScores<O,D extends NumberDistance<D,?>>
Application that runs a series of kNN-based algorithms on a data set, for
building an ensemble in a second step.
|
static class |
ComputeKNNOutlierScores.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNExplorer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and
distance function.
|
static class |
KNNExplorer.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.similarityFunction
Holds the similarity function.
|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.Parameterizer.similarityFunction
Holds the similarity function.
|
private SimilarityQuery<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.Instance.similarityQuery
The similarity query we use.
|
Modifier and Type | Class and Description |
---|---|
class |
NumberDistanceParser<D extends NumberDistance<D,?>>
Provides a parser for parsing one distance value per line.
|
static class |
NumberDistanceParser.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private D |
NumberDistanceParser.distanceFactory
The distance function.
|
protected D |
NumberDistanceParser.Parameterizer.distanceFactory
The distance function.
|
Modifier and Type | Class and Description |
---|---|
class |
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance.
|
Modifier and Type | Class and Description |
---|---|
class |
BitDistance
Provides a Distance for a bit-valued distance.
|
class |
DoubleDistance
Provides a Distance for a double-valued distance.
|
class |
FloatDistance
Provides a Distance for a float-valued distance.
|
class |
IntegerDistance
Provides an integer distance value.
|
Modifier and Type | Field and Description |
---|---|
protected PrimitiveDistanceFunction<? super O,? extends NumberDistance<?,?>> |
InvertedDistanceSimilarityFunction.distanceFunction
Holds the similarity function.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use
|
private DistanceFunction<O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
ScalingFunction scaling,
boolean skipzero)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
MkAppDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of a MkApp-Tree.
|
(package private) interface |
MkAppEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node.
|
(package private) class |
MkAppLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkApp-Tree.
|
class |
MkAppTree<O,D extends NumberDistance<D,?>>
MkAppTree is a metrical index structure based on the concepts of the M-Tree
supporting efficient processing of reverse k nearest neighbor queries for
parameter k < kmax.
|
class |
MkAppTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkApp-Tree
|
static class |
MkAppTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
MkAppTreeIndex<O,D extends NumberDistance<D,?>>
MkAppTree used as database index.
|
(package private) class |
MkAppTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkApp-Tree.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
MkCoPDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of an MkCop-Tree.
|
(package private) interface |
MkCoPEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node.
|
(package private) class |
MkCoPLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkCoP-Tree.
|
class |
MkCoPTree<O,D extends NumberDistance<D,?>>
MkCopTree is a metrical index structure based on the concepts of the M-Tree
supporting efficient processing of reverse k nearest neighbor queries for
parameter k < kmax.
|
class |
MkCopTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkCoPTree-Tree
|
static class |
MkCopTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
MkCoPTreeIndex<O,D extends NumberDistance<D,?>>
MkCoPTree used as database index.
|
(package private) class |
MkCoPTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkCop-Tree.
|
Modifier and Type | Method and Description |
---|---|
<O,D extends NumberDistance<D,?>> |
ApproximationLine.getApproximatedKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the approximated knn-distance at the specified k.
|
Modifier and Type | Method and Description |
---|---|
private <D extends NumberDistance<D,?>> |
PCAFilteredAutotuningRunner.assertSortedByDistance(DistanceDBIDResult<D> results)
Ensure that the results are sorted by distance.
|
<D extends NumberDistance<D,?>> |
PCAFilteredAutotuningRunner.processQueryResult(DistanceDBIDResult<D> results,
Relation<? extends V> database) |
<D extends NumberDistance<D,?>> |
PCARunner.processQueryResult(DistanceDBIDResult<D> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
PCAFilteredRunner.processQueryResult(DistanceDBIDResult<D> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDResult<D> results,
Relation<? extends V> database) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDResult<D> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(DistanceDBIDResult<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDResult<D> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDResult<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Modifier and Type | Class and Description |
---|---|
class |
OPTICSNumberDistance<D extends NumberDistance<D,?>>
Adapter that will map a regular number distance to its double value.
|
Modifier and Type | Method and Description |
---|---|
static <D extends NumberDistance<?,?>> |
SVGHyperSphere.drawCross(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
D rad)
Wireframe "cross" hypersphere
|
static <D extends NumberDistance<?,?>> |
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
D rad)
Wireframe "euclidean" hypersphere
|
static <D extends NumberDistance<?,?>> |
SVGHyperSphere.drawLp(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
D rad,
double p)
Wireframe "Lp" hypersphere
|
static <D extends NumberDistance<?,?>> |
SVGHyperSphere.drawManhattan(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
D rad)
Wireframe "manhattan" hypersphere
|
Modifier and Type | Class and Description |
---|---|
class |
TreeSphereVisualization.Instance<D extends NumberDistance<D,?>,N extends AbstractMTreeNode<?,D,N,E>,E extends MTreeEntry<D>>
Instance for a particular tree.
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceFunctionVisualization.Instance<D extends NumberDistance<D,?>>
Instance, visualizing a particular set of kNNs
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceStddevOutlier<O,D extends NumberDistance<D,?>>
A simple outlier detection algorithm that computes the standard deviation of
the kNN distances.
|
static class |
DistanceStddevOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class
|