Uses of Class
de.lmu.ifi.dbs.elki.distance.distancevalue.NumberDistance

Packages that use NumberDistance
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application.cache Utility applications for the persistence layer such as distance cache builders. 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.datasource.parser Parsers for different file formats and data types. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancevalue Distance values, i.e. object storing an actual distance value along with comparison functions and value parsers. 
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.visualization.opticsplot Code for drawing OPTICS plots 
de.lmu.ifi.dbs.elki.visualization.svg Base SVG functionality (generation, markers, thumbnails, export, ...). 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.algorithm
 

Classes in de.lmu.ifi.dbs.elki.algorithm with type parameters of type NumberDistance
 class MaterializeDistances<O,D extends NumberDistance<D,?>>
          Algorithm to materialize all the distances in a data set.
static class MaterializeDistances.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type NumberDistance
 class OPTICSXi<N extends NumberDistance<N,?>>
          Class to handle OPTICS Xi extraction.
static class OPTICSXi.Parameterizer<D extends NumberDistance<D,?>>
          Parameterization class.
private static class OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>>
          Position when scanning for steep areas
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with type parameters of type NumberDistance
 class INFLO<O,D extends NumberDistance<D,?>>
          INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006
Ranking outliers using symmetric neighborhood relationship
In Proc.
static class INFLO.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class KNNOutlier<O,D extends NumberDistance<D,?>>
           Outlier Detection based on the distance of an object to its k nearest neighbor.
static class KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class KNNWeightOutlier<O,D extends NumberDistance<D,?>>
          Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
static class KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class LDOF<O,D extends NumberDistance<D,?>>
           Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database.
static class LDOF.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class LOCI<O,D extends NumberDistance<D,?>>
          Fast Outlier Detection Using the "Local Correlation Integral".
static class LOCI.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class LOF<O,D extends NumberDistance<D,?>>
           Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k).
static class LOF.LOFResult<O,D extends NumberDistance<D,?>>
          Encapsulates information like the neighborhood, the LRD and LOF values of the objects during a run of the LOF algorithm.
static class LOF.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class LoOP<O,D extends NumberDistance<D,?>>
          LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability.
static class LoOP.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class OnlineLOF<O,D extends NumberDistance<D,?>>
          Incremental version of the LOF Algorithm, supports insertions and removals.
static class OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class OPTICSOF<O,D extends NumberDistance<D,?>>
          OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database.
static class OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
           provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.
static class ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          Parameterization class.
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as NumberDistance
private  D LOCI.rmax
          Holds the value of LOCI.RMAX_ID.
protected  D LOCI.Parameterizer.rmax
           
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with type parameters of type NumberDistance
 class AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
          Abstract base class for distance-based spatial outlier detection methods.
static class AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>>
          Parameterization class.
 class CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          GLS-Backward Search is a statistical approach to detecting spatial outliers.
static class CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          Parameterization class
 class CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
          Spatial outlier detection based on random walks.
static class CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
          Parameterization class.
 class SLOM<N,O,D extends NumberDistance<D,?>>
          SLOM: a new measure for local spatial outliers Reference:
Sanjay Chawla and Pei Sun
SLOM: a new measure for local spatial outliers
in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.
static class SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>>
          Parameterization class.
 class SOF<N,O,D extends NumberDistance<D,?>>
          The Spatial Outlier Factor (SOF) is a spatial LOF variation.
static class SOF.Parameterizer<N,O,D extends NumberDistance<D,?>>
          Parameterization class
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Classes in de.lmu.ifi.dbs.elki.algorithm.statistics with type parameters of type NumberDistance
 class DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
          Algorithm to gather statistics over the distance distribution in the data set.
static class DistanceStatisticsWithClasses.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
static class EvaluateRankingQuality.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
          Parameterization class.
 class RankingQualityHistogram<O,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
static class RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.application.cache
 

Classes in de.lmu.ifi.dbs.elki.application.cache with type parameters of type NumberDistance
 class CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
          Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access.
static class CacheDoubleDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
          Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access.
static class CacheFloatDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.application.visualization
 

Classes in de.lmu.ifi.dbs.elki.application.visualization with type parameters of type NumberDistance
 class KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          User application to explore the k Nearest Neighbors for a given data set and distance function.
static class KNNExplorer.Parameterizer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          Parameterization class.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.datasource.parser
 

Classes in de.lmu.ifi.dbs.elki.datasource.parser with type parameters of type NumberDistance
 class NumberDistanceParser<D extends NumberDistance<D,N>,N extends Number>
          Provides a parser for parsing one distance value per line.
static class NumberDistanceParser.Parameterizer<D extends NumberDistance<D,N>,N extends Number>
          Parameterization class.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Fields in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with type parameters of type NumberDistance
protected  NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> AbstractSimilarityAdapter.similarityFunction
          Holds the similarity function.
protected  NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> AbstractSimilarityAdapter.Parameterizer.similarityFunction
          Holds the similarity function.
private  SimilarityQuery<? super O,? extends NumberDistance<?,?>> AbstractSimilarityAdapter.Instance.similarityQuery
          The similarity query we use.
 

Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with type arguments of type NumberDistance
AbstractSimilarityAdapter.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
AbstractSimilarityAdapter(NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> similarityFunction)
          Constructor.
SimilarityAdapterArccos.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterArccos(NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> similarityFunction)
          Constructor.
SimilarityAdapterLinear.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLinear(NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> similarityFunction)
          Constructor.
SimilarityAdapterLn.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLn(NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> similarityFunction)
          Constructor.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.distance.distancevalue
 

Classes in de.lmu.ifi.dbs.elki.distance.distancevalue with type parameters of type NumberDistance
 class NumberDistance<D extends NumberDistance<D,N>,N extends Number>
          Provides a Distance for a number-valued distance.
 

Subclasses of NumberDistance in de.lmu.ifi.dbs.elki.distance.distancevalue
 class BitDistance
          Provides a Distance for a bit-valued distance.
 class DoubleDistance
          Provides a Distance for a double-valued distance.
 class FloatDistance
          Provides a Distance for a float-valued distance.
 class IntegerDistance
          Provides an integer distance value.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix
 

Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with type parameters of type NumberDistance
private  DistanceFunction<? super O,? extends NumberDistance<?,?>> ComputeSimilarityMatrixImage.distanceFunction
          The distance function to use
private  DistanceFunction<O,? extends NumberDistance<?,?>> ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
          The distance function to use
 

Constructor parameters in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with type arguments of type NumberDistance
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction, ScalingFunction scaling, boolean skipzero)
          Constructor.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with type parameters of type NumberDistance
(package private)  class MkAppDirectoryEntry<D extends NumberDistance<D,?>>
          Represents an entry in a directory node of a MkApp-Tree.
(package private)  interface MkAppEntry<D extends NumberDistance<D,?>>
          Defines the requirements for an entry in an MkCop-Tree node.
(package private)  class MkAppLeafEntry<D extends NumberDistance<D,?>>
          Represents an entry in a leaf node of a MkApp-Tree.
 class MkAppTree<O,D extends NumberDistance<D,?>>
          MkAppTree is a metrical index structure based on the concepts of the M-Tree supporting efficient processing of reverse k nearest neighbor queries for parameter k < kmax.
 class MkAppTreeFactory<O,D extends NumberDistance<D,?>>
          Factory for a MkApp-Tree
static class MkAppTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class MkAppTreeIndex<O,D extends NumberDistance<D,?>>
          MkAppTree used as database index.
(package private)  class MkAppTreeNode<O,D extends NumberDistance<D,?>>
          Represents a node in an MkApp-Tree.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with type parameters of type NumberDistance
(package private)  class MkCoPDirectoryEntry<D extends NumberDistance<D,?>>
          Represents an entry in a directory node of an MkCop-Tree.
(package private)  interface MkCoPEntry<D extends NumberDistance<D,?>>
          Defines the requirements for an entry in an MkCop-Tree node.
(package private)  class MkCoPLeafEntry<D extends NumberDistance<D,?>>
          Represents an entry in a leaf node of a MkCoP-Tree.
 class MkCoPTree<O,D extends NumberDistance<D,?>>
          MkCopTree is a metrical index structure based on the concepts of the M-Tree supporting efficient processing of reverse k nearest neighbor queries for parameter k < kmax.
 class MkCopTreeFactory<O,D extends NumberDistance<D,?>>
          Factory for a MkCoPTree-Tree
static class MkCopTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
          Parameterization class.
 class MkCoPTreeIndex<O,D extends NumberDistance<D,?>>
          MkCoPTree used as database index.
(package private)  class MkCoPTreeNode<O,D extends NumberDistance<D,?>>
          Represents a node in an MkCop-Tree.
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with type parameters of type NumberDistance
<O,D extends NumberDistance<D,?>>
D
ApproximationLine.getApproximatedKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the approximated knn-distance at the specified k.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Methods in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with type parameters of type NumberDistance
<D extends NumberDistance<?,?>>
PCAResult
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
PCAFilteredResult
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.visualization.opticsplot
 

Classes in de.lmu.ifi.dbs.elki.visualization.opticsplot with type parameters of type NumberDistance
 class OPTICSNumberDistance<D extends NumberDistance<D,?>>
          Adapter that will map a regular number distance to its double value.
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.visualization.svg
 

Methods in de.lmu.ifi.dbs.elki.visualization.svg with type parameters of type NumberDistance
static
<V extends NumberVector<V,?>,D extends NumberDistance<?,?>>
Element
SVGHyperSphere.drawCross(SVGPlot svgp, Projection2D proj, V mid, D rad)
          Wireframe "cross" hypersphere
static
<V extends NumberVector<V,?>,D extends NumberDistance<?,?>>
Element
SVGHyperSphere.drawEuclidean(SVGPlot svgp, Projection2D proj, V mid, D rad)
          Wireframe "euclidean" hypersphere
static
<V extends NumberVector<V,?>,D extends NumberDistance<?,?>>
Element
SVGHyperSphere.drawLp(SVGPlot svgp, Projection2D proj, V mid, D rad, double p)
          Wireframe "Lp" hypersphere
static
<V extends NumberVector<V,?>,D extends NumberDistance<?,?>>
Element
SVGHyperSphere.drawManhattan(SVGPlot svgp, Projection2D proj, V mid, D rad)
          Wireframe "manhattan" hypersphere
 

Uses of NumberDistance in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type NumberDistance
 class TreeSphereVisualization<NV extends NumberVector<NV,?>,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<NV,D,N,E>,E extends MTreeEntry<D>>
          Visualize the bounding sphere of a metric index.
 


Release 0.4.0 (2011-09-20_1324)