Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
Weighted Neighborhood definitions.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query |
Database queries - computing distances, neighbors, similarities - API and general documentation.
|
de.lmu.ifi.dbs.elki.database.query.distance |
Prepared queries for distances.
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries.
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.similarity |
Prepared queries for similarity functions.
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.evaluation.roc |
Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve)
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.lsh |
Locality Sensitive Hashing
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH.
|
de.lmu.ifi.dbs.elki.index.preprocessed |
Index structure based on preprocessors
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
Metrical index structures based on the concepts of the M-Tree
supporting processing of reverse k nearest neighbor queries by
using the k-nn distances of the entries.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.scales |
Scales handling for plotting.
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
de.lmu.ifi.dbs.elki.result.outlier |
Outlier result classes
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.referencepoints |
Package containing strategies to obtain reference points
Shared code for various algorithms that use reference points.
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.gui |
Package to provide a visualization GUI.
|
de.lmu.ifi.dbs.elki.visualization.projector |
Projectors are responsible for finding appropriate projections for data relations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.histogram |
Visualizers based on 1D projected histograms.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel |
Visualizers based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot |
Visualizers based on scatterplots.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier |
Visualizers for outlier scores based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.outlier |
Modifier and Type | Method and Description |
---|---|
protected BitSet[] |
APRIORI.frequentItemsets(Map<BitSet,Integer> support,
BitSet[] candidates,
Relation<BitVector> database)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids)
Runs the pca on the given set of IDs.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
Vector centroid)
Runs the pca on the given set of IDs and for the given centroid.
|
AprioriResult |
APRIORI.run(Database database,
Relation<BitVector> relation)
Performs the APRIORI algorithm on the given database.
|
CollectionResult<CTriple<DBID,DBID,Double>> |
MaterializeDistances.run(Database database,
Relation<O> relation)
Iterates over all points in the database.
|
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
KNNDistanceOrderResult<D> |
KNNDistanceOrder.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
database.
|
WritableDataStore<KNNList<D>> |
KNNJoin.run(Database database,
Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
given database based on a linear correlation PCA.
|
Modifier and Type | Method and Description |
---|---|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm, with a separate query set.
|
Result |
KNNBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
ValidateApproximativeKNNIndex.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector<?>> radrel)
Run the algorithm, with separate radius relation
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector<?>> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector<?>> relation,
double[] normDistrFactor,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
protected void |
DBSCAN.expandCluster(Relation<O> relation,
RangeQuery<O,D> rangeQuery,
DBIDRef startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster.
|
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result.
|
private DBID |
DeLiClu.getStartObject(Relation<NV> relation)
Returns the id of the start object for the run method.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector<?>> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] covarianceMatrices,
int dimensionality)
Recompute the covariance matrixes.
|
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
ClusterOrderResult<D> |
DeLiClu.run(Database database,
Relation<NV> relation) |
ClusterOrderResult<D> |
OPTICS.run(Database database,
Relation<O> relation)
Run OPTICS on the database.
|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<ClusterModel> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation)
Run the algorithm
|
Clustering<MeanModel<V>> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Clustering<EMModel<V>> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Clustering<Model> |
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids)
Compute the initial similarity matrix.
|
double[][] |
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<V> |
AbstractBiclustering.relation
Relation we use.
|
Modifier and Type | Method and Description |
---|---|
Relation<V> |
AbstractBiclustering.getRelation()
Getter for the relation.
|
Modifier and Type | Method and Description |
---|---|
Clustering<M> |
AbstractBiclustering.run(Relation<V> relation)
Prepares the algorithm for running on a specific database.
|
Modifier and Type | Field and Description |
---|---|
private Relation<ParameterizationFunction> |
CASH.fulldatabase
The entire relation.
|
Modifier and Type | Method and Description |
---|---|
private Relation<ParameterizationFunction> |
CASH.preprocess(Database db,
Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions.
|
Modifier and Type | Method and Description |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its
closest seed.
|
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
the specified subspace.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private double[] |
CASH.determineMinMaxDistance(Relation<ParameterizationFunction> relation,
int dimensionality)
Determines the minimum and maximum function value of all parameterization
functions stored in the specified database.
|
private static int |
CASH.dimensionality(Relation<ParameterizationFunction> relation)
Get the dimensionality of a vector field.
|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private LMCLUS.Separation |
LMCLUS.findSeparation(Relation<NumberVector<?>> relation,
DBIDs currentids,
int dimension,
Random r)
This method samples a number of linear manifolds an tries to determine
which the one with the best cluster is.
|
private void |
CASH.initHeap(ObjectHeap<IntegerPriorityObject<CASHInterval>> heap,
Relation<ParameterizationFunction> relation,
int dim,
DBIDs ids)
Initializes the heap with the root intervals.
|
private List<ORCLUS.ORCLUSCluster> |
ORCLUS.initialSeeds(Relation<V> database,
int k)
Initializes the list of seeds wit a random sample of size k.
|
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new
|
private Relation<ParameterizationFunction> |
CASH.preprocess(Database db,
Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions.
|
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector<?>> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database.
|
Clustering<CorrelationModel<V>> |
ERiC.run(Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
private LinearEquationSystem |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dimensionality,
DBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result.
|
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> relation,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters.
|
Modifier and Type | Field and Description |
---|---|
private Relation<ParameterizationFunction> |
CASHIntervalSplit.database
The database storing the parameterization functions.
|
Constructor and Description |
---|
CASHIntervalSplit(Relation<ParameterizationFunction> database,
int minPts)
Initializes the logger and sets the debug status to the given value.
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult<D> |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database.
|
PointerHierarchyRepresentationResult<DoubleDistance> |
NaiveAgglomerativeHierarchicalClustering.run(Database db,
Relation<O> relation)
Run the algorithm
|
private void |
SLINK.step2double(DBIDRef id,
DBIDs processedIDs,
Relation<? extends O> relation,
PrimitiveDoubleDistanceFunction<? super O> distFunc,
WritableDoubleDistanceDataStore m)
Second step: Determine the pairwise distances from all objects in the
pointer representation to the new object with the specified id.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
DBIDs ids,
List<? extends NumberVector<?>> oldmeans,
double[][] meanshift,
int[] changesize,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.assignToNearestCluster(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment)
Returns a list of clusters.
|
List<V> |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction)
Choose initial means
|
List<V> |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment)
Perform a MacQueen style iteration.
|
protected List<Vector> |
AbstractKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
protected List<NumberVector<?>> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
Clustering<KMeansModel<V>> |
KMeansBatchedLloyd.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<KMeansModel<V>> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsEM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<KMeansModel<V>> |
KMeansHybridLloydMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel<V>> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
Clustering<MeanModel<V>> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
protected double |
KMeansPlusPlusInitialMeans.updateWeights(double[] weights,
ArrayDBIDs ids,
DBID latest,
PrimitiveDoubleDistanceFunction<V> distF,
Relation<V> rel)
Update the weight list.
|
Modifier and Type | Method and Description |
---|---|
<V extends O> |
KMeansQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends D> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
<V extends NumberVector<?>> |
WithinClusterVarianceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
<V extends NumberVector<?>> |
WithinClusterMeanDistanceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
Clustering<ClusterModel> |
KNNKernelDensityMinimaClustering.run(Relation<V> relation)
Run the clustering algorithm on a data relation.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(Map<DBID,gnu.trove.set.TIntSet> dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private void |
P3C.assignUnassigned(Relation<V> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
distance.
|
private double |
PROCLUS.avgDistance(V centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Clustering<SubspaceModel<V>> clustering,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
private void |
DiSH.checkClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap,
int minpts)
Removes the clusters with size < minpts from the cluster map and adds them
to their parents.
|
private Clustering<SubspaceModel<V>> |
DiSH.computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order.
|
private void |
P3C.computeFuzzyMembership(Relation<V> relation,
ArrayList<P3C.Signature> clusterCores,
ModifiableDBIDs unassigned,
WritableDataStore<double[]> probClusterIGivenX,
double[] clusterWeights)
Computes a fuzzy membership with the weights based on which cluster cores
each data point is part of.
|
private boolean |
DOC.dimensionIsRelevant(int dimension,
Relation<V> relation,
DBIDs points)
Utility method to test if a given dimension is relevant as determined via a
set of reference points (i.e. if the variance along the attribute is lower
than the threshold).
|
private double |
PROCLUS.evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
Map<DBID,gnu.trove.set.TIntSet> dimensions,
Relation<V> database)
Evaluates the quality of the clusters.
|
private Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> |
DiSH.extractClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
Extracts the clusters from the cluster order.
|
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<V,gnu.trove.set.TIntSet>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaceCandidates(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the
k -dimensional dense subspace candidates from the
specified (k-1) -dimensional dense subspaces. |
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaces(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the
k -dimensional dense subspaces and performs a pruning
if this option is chosen. |
private Map<DBID,gnu.trove.set.TIntSet> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private List<Pair<V,gnu.trove.set.TIntSet>> |
PROCLUS.findDimensions(List<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<V> database)
Determines the one-dimensional dense subspace candidates by making a pass
over the database.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaces(Relation<V> database)
Determines the one dimensional dense subspaces and performs a pruning if
this option is chosen.
|
private void |
P3C.findOutliers(Relation<V> relation,
Vector[] means,
Matrix[] invCovMatr,
ArrayList<P3C.ClusterCandidate> clusterCandidates,
int nonUniformDimensionCount,
ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
point in a cluster against the critical value of the ChiSquared
distribution with as many degrees of freedom as the cluster has relevant
attributes.
|
private Pair<BitSet,ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Pair<BitSet,ArrayModifiableDBIDs> child,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns the parent of the specified cluster
|
private Map<DBID,DistanceDBIDList<DoubleDistance>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private Collection<CLIQUEUnit<V>> |
CLIQUE.initOneDimensionalUnits(Relation<V> database)
Initializes and returns the one dimensional units.
|
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
Hierarchy.Iter<Cluster<SubspaceModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
private Cluster<SubspaceModel<V>> |
DOC.makeCluster(Relation<V> relation,
DBIDs C,
BitSet D)
Utility method to create a subspace cluster from a list of DBIDs and the
relevant attributes.
|
private SetDBIDs[][] |
P3C.partitionData(Relation<V> relation,
int bins)
Partition the data set into
bins bins in each dimension
independently. |
Clustering<SubspaceModel<V>> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
Clustering<SubspaceModel<V>> |
DiSH.run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
Clustering<SubspaceModel<V>> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database.
|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
private Cluster<SubspaceModel<V>> |
DOC.runDOC(Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel<V>> |
DOC.runFastDOC(Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
private List<Cluster<SubspaceModel<V>>> |
DiSH.sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Modifier and Type | Method and Description |
---|---|
private HashMap<String,DBIDs> |
ByLabelClustering.multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their
labels.
|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
private HashMap<String,DBIDs> |
ByLabelClustering.singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their
labels.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<O> |
HilOut.HilbertFeatures.relation
Relation indexed
|
Modifier and Type | Method and Description |
---|---|
protected ArrayList<ArrayList<DBIDs>> |
AbstractAggarwalYuOutlier.buildRanges(Relation<V> relation)
Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges. |
protected double |
ABOD.computeABOF(Relation<V> relation,
KernelMatrix kernelMatrix,
DBIDRef pA,
MeanVariance s)
Compute the exact ABOF value.
|
protected DistanceDBIDList<D> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point.
|
protected DoubleDataStore |
DBOutlierScore.computeOutlierScores(Database database,
Relation<O> relation,
D d) |
protected DoubleDataStore |
DBOutlierDetection.computeOutlierScores(Database database,
Relation<O> relation,
D neighborhoodSize) |
protected abstract DoubleDataStore |
AbstractDBOutlier.computeOutlierScores(Database database,
Relation<O> relation,
D d)
computes an outlier score for each object of the database.
|
private double |
GaussianUniformMixture.loglikelihoodNormal(DBIDs objids,
Relation<V> database)
Computes the loglikelihood of all normal objects.
|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
|
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
DWOF.run(Database database,
Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by
calling all the other methods in the proper order.
|
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection.
|
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
HilOut.run(Database database,
Relation<O> relation) |
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
FastABOD.run(Database db,
Relation<V> relation)
Run Fast-ABOD on the data set.
|
OutlierResult |
LBABOD.run(Database db,
Relation<V> relation)
Run LB-ABOD on the data set.
|
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
OutlierResult |
ReferenceBasedOutlierDetection.run(Database database,
Relation<V> relation)
Run the algorithm on the given relation.
|
OutlierResult |
ABOD.run(Database db,
Relation<V> relation)
Run ABOD on the data set.
|
OutlierResult |
SimpleCOP.run(Database database,
Relation<V> data) |
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
COP.run(Relation<V> relation)
Process a single relation.
|
OutlierResult |
GaussianUniformMixture.run(Relation<V> relation)
Run the algorithm
|
OutlierResult |
AggarwalYuNaive.run(Relation<V> relation)
Run the algorithm on the given relation.
|
OutlierResult |
GaussianModel.run(Relation<V> relation)
Run the algorithm
|
Constructor and Description |
---|
AggarwalYuEvolutionary.EvolutionarySearch(Relation<V> relation,
ArrayList<ArrayList<DBIDs>> ranges,
int m,
Random random)
Constructor.
|
HilOut.HilbertFeatures(Relation<O> relation,
double[] min,
double diameter)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector<?>> |
ALOCI.ALOCIQuadTree.relation
Relation indexed.
|
Modifier and Type | Method and Description |
---|---|
private Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
private Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
protected Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
OutlierResult |
FlexibleLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O, D>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O, D>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress) . |
OutlierResult |
OnlineLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
LOCI.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
LDF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
SimplifiedLOF.run(Database database,
Relation<O> relation)
Run the Simple LOF algorithm.
|
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database.
|
OutlierResult |
INFLO.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
ALOCI.run(Database database,
Relation<O> relation) |
OutlierResult |
LOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database.
|
OutlierResult |
LDOF.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
SimpleKernelDensityLOF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
Constructor and Description |
---|
ALOCI.ALOCIQuadTree(double[] min,
double[] max,
double[] shift,
int nmin,
Relation<? extends NumberVector<?>> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCS.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private void |
HiCS.calculateContrast(Relation<? extends NumberVector<?>> relation,
HiCS.HiCSSubspace subspace,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Calculates the actual contrast of a given subspace.
|
private Set<HiCS.HiCSSubspace> |
HiCS.calculateSubspaces(Relation<? extends NumberVector<?>> relation,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Identifies high contrast subspaces in a given full-dimensional database.
|
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector<?>> relation)
Run the algorithm on a data set.
|
OutlierResult |
HiCS.run(Relation<V> relation)
Perform HiCS on a given database.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run the algorithm
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run the algorithm
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes) |
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes) |
private Pair<DBIDVar,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run a single iteration of the GLS-SOD modeling step
|
private Pair<DBIDVar,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run a single iteration of the GLS-SOD modeling step
|
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Relation<? extends O> database)
Method to load the external neighbors.
|
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Relation<?> relation) |
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method.
|
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database) |
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Relation<? extends O> relation) |
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Database database,
Relation<?> relation)
Method to load the external neighbors.
|
Modifier and Type | Method and Description |
---|---|
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database) |
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Relation<? extends O> relation) |
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<V> |
OUTRES.KernelDensityEstimator.relation
Relation to retrieve data from
|
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector<?>> relation,
Vector center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
private DBIDs |
SOD.getNearestNeighbors(Relation<V> relation,
SimilarityQuery<V,D> simQ,
DBIDRef queryObject)
Provides the k nearest neighbors in terms of the shared nearest neighbor
distance.
|
OutlierResult |
SOD.run(Relation<V> relation)
Performs the SOD algorithm on the given database.
|
OutlierResult |
OUTRES.run(Relation<V> relation)
Main loop for OUTRES
|
Constructor and Description |
---|
OUTRES.KernelDensityEstimator(Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ByLabelOutlier.run(Relation<?> relation)
Run the algorithm
|
OutlierResult |
TrivialNoOutlier.run(Relation<?> relation)
Run the actual algorithm.
|
OutlierResult |
TrivialAllOutlier.run(Relation<?> relation)
Run the actual algorithm.
|
OutlierResult |
TrivialAverageCoordinateOutlier.run(Relation<? extends NumberVector<?>> relation)
Run the actual algorithm.
|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector<?>> vecs,
Relation<?> labels)
Run the algorithm
|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector<?>> vecs,
Relation<?> labels)
Run the algorithm
|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector<?>> vecs,
Relation<?> labels)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> relation,
DistanceQuery<O,D> distFunc)
Compute the exact maximum and minimum.
|
HistogramResult<DoubleVector> |
RankingQualityHistogram.run(Database database,
Relation<O> relation)
Process a database
|
CollectionResult<DoubleVector> |
AveragePrecisionAtK.run(Database database,
Relation<V> relation,
Relation<ClassLabel> lrelation)
Run the algorithm
|
CollectionResult<DoubleVector> |
AveragePrecisionAtK.run(Database database,
Relation<V> relation,
Relation<ClassLabel> lrelation)
Run the algorithm
|
private ScalesResult |
AddSingleScale.run(Relation<? extends NumberVector<?>> rel)
Add scales to a single vector relation.
|
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> relation,
DistanceQuery<O,D> distFunc)
Estimate minimum and maximum via sampling.
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector<?>> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector<?>> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector<?>> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector<?>> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector<?>> |
VectorUtil.SortDBIDsBySingleDimension.data
The relation to sort.
|
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorUtil.computeMedoid(Relation<? extends NumberVector<?>> relation,
DBIDs sample)
Compute medoid for a given subset.
|
Constructor and Description |
---|
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector<?>> data)
Constructor.
|
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector<?>> data,
int dim)
Constructor.
|
Constructor and Description |
---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
Modifier and Type | Field and Description |
---|---|
protected List<Relation<?>> |
AbstractDatabase.relations
The relations we manage.
|
Modifier and Type | Method and Description |
---|---|
private Relation<?> |
StaticArrayDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta.
|
private Relation<?> |
HashmapDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta.
|
protected Relation<?>[] |
StaticArrayDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding
new database columns when needed.
|
protected Relation<?>[] |
HashmapDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding
new database columns when needed.
|
<O> Relation<O> |
Database.getRelation(TypeInformation restriction,
Object... hints)
Get an object representation.
|
<O> Relation<O> |
AbstractDatabase.getRelation(TypeInformation restriction,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
Collection<Relation<?>> |
Database.getRelations()
Get all relations of a database.
|
Collection<Relation<?>> |
AbstractDatabase.getRelations() |
Modifier and Type | Method and Description |
---|---|
void |
ProxyDatabase.addRelation(Relation<?> relation)
Add a new representation.
|
<O,D extends Distance<D>> |
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function.
|
<O,D extends Distance<D>> |
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints) |
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function.
|
<O,D extends Distance<D>> |
Database.getSimilarityQuery(Relation<O> relation,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
Get the similarity query for a particular similarity function.
|
<O,D extends Distance<D>> |
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints) |
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Relation<?>... relations)
Constructor.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Iterable<Relation<?>> relations)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends O> |
AbstractDataBasedQuery.relation
The data to use for this query
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
AbstractDataBasedQuery.getRelation()
Get the queries relation.
|
Constructor and Description |
---|
AbstractDataBasedQuery(Relation<? extends O> relation)
Database this query works on.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
DistanceQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
AbstractDatabaseDistanceQuery(Relation<? extends O> relation)
Constructor.
|
AbstractDistanceQuery(Relation<? extends O> relation)
Constructor.
|
DBIDDistanceQuery(Relation<DBID> relation,
DBIDDistanceFunction<D> distanceFunction)
Constructor.
|
PrimitiveDistanceQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction)
Constructor.
|
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor.
|
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation,
SpatialPrimitiveDistanceFunction<? super V,D> distanceFunction) |
Modifier and Type | Method and Description |
---|---|
private static <O> void |
DoubleOptimizedDistanceKNNQuery.linearScan(Relation<? extends O> relation,
DBIDIter iter,
PrimitiveDoubleDistanceFunction<? super O> rawdist,
O obj,
DoubleDistanceKNNHeap heap) |
Constructor and Description |
---|
PreprocessorKNNQuery(Relation<O> database,
AbstractMaterializeKNNPreprocessor.Factory<O,D,T> preprocessor)
Constructor.
|
PreprocessorKNNQuery(Relation<O> database,
AbstractMaterializeKNNPreprocessor<O,D,T> preprocessor)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private static <O> void |
DoubleOptimizedDistanceRangeQuery.linearScan(Relation<? extends O> relation,
DBIDIter iter,
PrimitiveDoubleDistanceFunction<? super O> rawdist,
O obj,
double range,
ModifiableDoubleDistanceDBIDList result) |
Constructor and Description |
---|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor.Factory<O,D> preprocessor)
Constructor.
|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor<O,D> preprocessor)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
SimilarityQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
AbstractDBIDSimilarityQuery(Relation<? extends O> relation)
Constructor.
|
AbstractSimilarityQuery(Relation<? extends O> relation)
Constructor.
|
PrimitiveSimilarityQuery(Relation<? extends O> relation,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
ConvertToStringView
Representation adapter that uses toString() to produce a string
representation.
|
class |
DBIDView
Pseudo-representation that is the object ID itself.
|
class |
MaterializedRelation<O>
Represents a single representation.
|
class |
ProjectedView<IN,OUT>
Projected relation view (non-materialized)
|
class |
ProxyView<O>
A virtual partitioning of the database.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
ConvertToStringView.existing
The database we use
|
private Relation<O> |
ProxyView.inner
The wrapped representation where we get the IDs from.
|
private Relation<IN> |
ProjectedView.inner
The wrapped representation where we get the IDs from.
|
Modifier and Type | Method and Description |
---|---|
static <V extends FeatureVector<?>> |
RelationUtil.assumeVectorField(Relation<V> relation)
Get the vector field type information from a relation.
|
static int |
RelationUtil.dimensionality(Relation<? extends FeatureVector<?>> relation)
Get the dimensionality of a database relation.
|
static <V extends FeatureVector<?>> |
RelationUtil.getColumnLabel(Relation<? extends V> rel,
int col)
Get the column name or produce a generic label "Column XY".
|
static <V extends NumberVector<? extends N>,N extends Number> |
RelationUtil.getNumberVectorFactory(Relation<V> relation)
Get the number vector factory of a database relation.
|
static double[][] |
RelationUtil.relationAsMatrix(Relation<? extends NumberVector<?>> relation,
ArrayDBIDs ids)
Copy a relation into a double matrix.
|
static <O> ProxyView<O> |
ProxyView.wrap(Database database,
DBIDs idview,
Relation<O> inner)
Constructor-like static method.
|
Constructor and Description |
---|
ConvertToStringView(Relation<?> existing)
Constructor.
|
ProjectedView(Relation<IN> inner,
Projection<IN,OUT> projection)
Constructor.
|
ProxyView(Database database,
DBIDs idview,
Relation<O> inner)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<O extends DBID> |
AbstractDBIDDistanceFunction.instantiate(Relation<O> database) |
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceNorm.instantiate(Relation<T> relation) |
<T extends O> |
SharedNearestNeighborJaccardDistanceFunction.instantiate(Relation<T> database) |
<T extends O> |
FilteredLocalPCABasedDistanceFunction.instantiate(Relation<T> database)
Instantiate with a database to get the actual distance query.
|
<T extends O> |
MinKDistance.instantiate(Relation<T> relation) |
<T extends O> |
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.
|
<T extends O> |
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.
|
<T extends V> |
LocallyWeightedDistanceFunction.instantiate(Relation<T> database) |
<T extends V> |
SpatialPrimitiveDistanceFunction.instantiate(Relation<T> relation) |
Constructor and Description |
---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
DistanceFunction<? super O,D> parent)
Constructor.
|
AbstractIndexBasedDistanceFunction.Instance(Relation<O> database,
I index,
F parent)
Constructor.
|
LocallyWeightedDistanceFunction.Instance(Relation<V> database,
LocalProjectionIndex<V,?> index,
LocallyWeightedDistanceFunction<? super V> distanceFunction)
Constructor.
|
MinKDistance.Instance(Relation<T> relation,
int k,
DistanceFunction<? super O,D> parentDistance)
Constructor.
|
SharedNearestNeighborJaccardDistanceFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor,
SharedNearestNeighborJaccardDistanceFunction<T> parent)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends O> |
ArccosSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LnSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LinearAdapterLinear.instantiate(Relation<T> database) |
abstract <T extends O> |
AbstractSimilarityAdapter.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
ArccosSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LinearAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LnSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
ERiCDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?>> |
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
ERiCDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
ERiCDistanceFunction parent,
double delta,
double tau)
Constructor.
|
PCABasedCorrelationDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
double delta,
PCABasedCorrelationDistanceFunction distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
SubspaceLPNormDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?>> |
DiSHDistanceFunction.instantiate(Relation<T> database) |
<T extends V> |
HiSCDistanceFunction.instantiate(Relation<T> database) |
<V extends NumberVector<?>> |
LocalSubspaceDistanceFunction.instantiate(Relation<V> database) |
Constructor and Description |
---|
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance(Relation<V> database,
P preprocessor,
double epsilon,
AbstractPreferenceVectorBasedCorrelationDistanceFunction<? super V,?> distanceFunction)
Constructor.
|
DiSHDistanceFunction.Instance(Relation<V> database,
DiSHPreferenceVectorIndex<V> index,
double epsilon,
DiSHDistanceFunction distanceFunction)
Constructor.
|
HiSCDistanceFunction.Instance(Relation<V> database,
HiSCPreferenceVectorIndex<V> index,
double epsilon,
HiSCDistanceFunction<? super V> distanceFunction)
Constructor.
|
LocalSubspaceDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
LocalSubspaceDistanceFunction distanceFunction) |
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends DBID> |
AbstractDBIDSimilarityFunction.database
The database we work on
|
Modifier and Type | Method and Description |
---|---|
<T extends O> |
JaccardPrimitiveSimilarityFunction.instantiate(Relation<T> relation) |
<T extends O> |
FractionalSharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database) |
<T extends O> |
AbstractPrimitiveSimilarityFunction.instantiate(Relation<T> relation) |
<T extends O> |
IndexBasedSimilarityFunction.instantiate(Relation<T> database)
Preprocess the database to get the actual distance function.
|
abstract <T extends O> |
AbstractIndexBasedSimilarityFunction.instantiate(Relation<T> database) |
<T extends O> |
SharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database) |
<T extends O> |
SimilarityFunction.instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query.
|
Constructor and Description |
---|
AbstractDBIDSimilarityFunction(Relation<? extends DBID> database)
Constructor.
|
AbstractIndexBasedSimilarityFunction.Instance(Relation<O> database,
I index)
Constructor.
|
FractionalSharedNearestNeighborSimilarityFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor,
FractionalSharedNearestNeighborSimilarityFunction<? super T> similarityFunction)
Constructor.
|
SharedNearestNeighborSimilarityFunction.Instance(Relation<O> database,
SharedNearestNeighborIndex<O> preprocessor,
SharedNearestNeighborSimilarityFunction<? super O> similarityFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,D> kernelFunction,
Relation<? extends O> relation,
DBIDs ids)
Provides a new kernel matrix.
|
KernelMatrix(SimilarityQuery<? super O,D> kernelFunction,
Relation<? extends O> relation,
DBIDs ids)
Provides a new kernel matrix.
|
Modifier and Type | Method and Description |
---|---|
private XYCurve |
OutlierPrecisionRecallCurve.computePrecisionResult(int size,
SetDBIDs ids,
DBIDIter iter,
Relation<Double> scores) |
Modifier and Type | Field and Description |
---|---|
private Relation<Double> |
ROC.OutlierScoreAdapter.scores
Outlier score.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.relation
The database
|
Modifier and Type | Method and Description |
---|---|
Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.getRelation()
Get the relation
|
Modifier and Type | Method and Description |
---|---|
private ComputeSimilarityMatrixImage.SimilarityMatrix |
ComputeSimilarityMatrixImage.computeSimilarityMatrixImage(Relation<O> relation,
DBIDIter iter)
Compute the actual similarity image.
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
Relation<?> relation,
ArrayDBIDs ids)
Constructor
|
Modifier and Type | Field and Description |
---|---|
protected Relation<O> |
AbstractIndex.relation
The representation we are bound to.
|
Modifier and Type | Method and Description |
---|---|
I |
IndexFactory.instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing).
|
Constructor and Description |
---|
AbstractIndex(Relation<O> relation)
Constructor.
|
AbstractRefiningIndex(Relation<O> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
InMemoryLSHIndex.Instance |
InMemoryLSHIndex.instantiate(Relation<V> relation) |
Constructor and Description |
---|
InMemoryLSHIndex.Instance(Relation<V> relation,
ArrayList<? extends LocalitySensitiveHashFunction<? super V>> hashfunctions,
int numberOfBuckets)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector<?>>> |
AbstractHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector<?>> relation,
int l) |
ArrayList<? extends LocalitySensitiveHashFunction<? super V>> |
LocalitySensitiveHashFunctionFamily.generateHashFunctions(Relation<? extends V> relation,
int k)
Generate hash functions for the given relation.
|
Modifier and Type | Method and Description |
---|---|
I |
LocalProjectionIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database.
|
Constructor and Description |
---|
AbstractPreprocessorIndex(Relation<O> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private MetricalIndexTree<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.getMetricalIndex(Relation<O> relation)
Do some (limited) type checking, then cast the database into a spatial
database.
|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?>> relation) |
MetricalIndexApproximationMaterializeKNNPreprocessor<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
MaterializeKNNPreprocessor<O,D> |
MaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
abstract AbstractMaterializeKNNPreprocessor<O,D,T> |
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
RandomSampleKNNPreprocessor<O,D> |
RandomSampleKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
MaterializeKNNAndRKNNPreprocessor<O,D> |
MaterializeKNNAndRKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
CachedDoubleDistanceKNNPreprocessor<O> |
CachedDoubleDistanceKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
PartitionApproximationMaterializeKNNPreprocessor<O,D> |
PartitionApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
KNNJoinMaterializeKNNPreprocessor<O,D> |
KNNJoinMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
AbstractMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
CachedDoubleDistanceKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,DoubleDistance> distanceFunction,
int k,
File file)
Constructor.
|
KNNJoinMaterializeKNNPreprocessor(Relation<V> relation,
DistanceFunction<? super V,D> distanceFunction,
int k)
Constructor.
|
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor with preprocessing step.
|
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor
|
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
int partitions,
RandomFactory rnd)
Constructor
|
RandomSampleKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
double share,
RandomFactory rnd)
Constructor.
|
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor
|
Modifier and Type | Method and Description |
---|---|
abstract I |
AbstractFilteredPCAIndex.Factory.instantiate(Relation<NV> relation) |
I |
FilteredLocalPCAIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database.
|
RangeQueryFilteredPCAIndex<V> |
RangeQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation) |
KNNQueryFilteredPCAIndex<V> |
KNNQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation) |
Constructor and Description |
---|
AbstractFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca)
Constructor.
|
KNNQueryFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private BitSet |
HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
DBIDRef id,
DBIDs neighborIDs,
StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector with the apriori strategy.
|
private RangeQuery<V,DoubleDistance>[] |
DiSHPreferenceVectorIndex.initRangeQueries(Relation<V> relation,
int dimensionality)
Initializes the dimension selecting distancefunctions to determine the
preference vectors.
|
HiSCPreferenceVectorIndex<V> |
HiSCPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
abstract I |
AbstractPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
DiSHPreferenceVectorIndex<V> |
DiSHPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
I |
PreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database.
|
Constructor and Description |
---|
AbstractPreferenceVectorIndex(Relation<NV> relation)
Constructor.
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
HiSCPreferenceVectorIndex(Relation<V> relation,
double alpha,
int k)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
I |
SharedNearestNeighborIndex.Factory.instantiate(Relation<O> database)
Instantiate the index for a given database.
|
SharedNearestNeighborPreprocessor<O,D> |
SharedNearestNeighborPreprocessor.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected abstract P |
AbstractSubspaceProjectionIndex.computeProjection(DBIDRef id,
DistanceDBIDList<D> neighbors,
Relation<NV> relation)
This method implements the type of variance analysis to be computed for a
given point.
|
protected PCAFilteredResult |
FourCSubspaceIndex.computeProjection(DBIDRef id,
DistanceDBIDList<D> neighbors,
Relation<V> database) |
protected SubspaceProjectionResult |
PreDeConSubspaceIndex.computeProjection(DBIDRef id,
DistanceDBIDList<D> neighbors,
Relation<V> database) |
I |
SubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database.
|
abstract I |
AbstractSubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation) |
FourCSubspaceIndex<V,D> |
FourCSubspaceIndex.Factory.instantiate(Relation<V> relation) |
PreDeConSubspaceIndex<V,D> |
PreDeConSubspaceIndex.Factory.instantiate(Relation<V> relation) |
Constructor and Description |
---|
AbstractSubspaceProjectionIndex(Relation<NV> relation,
D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor.
|
FourCSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Full constructor.
|
PreDeConSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<O> |
ProjectedIndex.relation
The relation we predend to index.
|
(package private) Relation<I> |
ProjectedIndex.view
The view that we really index.
|
Modifier and Type | Method and Description |
---|---|
ProjectedIndex<O,O> |
LatLngAsECEFIndex.Factory.instantiate(Relation<O> relation) |
ProjectedIndex<O,I> |
ProjectedIndex.Factory.instantiate(Relation<O> relation) |
ProjectedIndex<O,O> |
LngLatAsECEFIndex.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
LatLngAsECEFIndex(Relation<O> relation,
Projection<O,O> proj,
Relation<O> view,
Index inner,
boolean norefine)
Constructor.
|
LatLngAsECEFIndex(Relation<O> relation,
Projection<O,O> proj,
Relation<O> view,
Index inner,
boolean norefine)
Constructor.
|
LngLatAsECEFIndex(Relation<O> relation,
Projection<O,O> proj,
Relation<O> view,
Index inner,
boolean norefine)
Constructor.
|
LngLatAsECEFIndex(Relation<O> relation,
Projection<O,O> proj,
Relation<O> view,
Index inner,
boolean norefine)
Constructor.
|
ProjectedIndex(Relation<O> relation,
Projection<O,I> proj,
Relation<I> view,
Index inner,
boolean norefine,
double kmulti)
Constructor.
|
ProjectedIndex(Relation<O> relation,
Projection<O,I> proj,
Relation<I> view,
Index inner,
boolean norefine,
double kmulti)
Constructor.
|
Constructor and Description |
---|
AbstractMkTree(Relation<O> relation,
PageFile<N> pagefile,
S settings)
Constructor.
|
AbstractMkTreeUnified(Relation<O> relation,
PageFile<N> pagefile,
S settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkAppTreeIndex.relation
The relation indexed
|
Modifier and Type | Method and Description |
---|---|
MkAppTreeIndex<O,D> |
MkAppTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkAppTree(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
MkAppTreeSettings<O,D> settings)
Constructor.
|
MkAppTreeIndex(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
MkAppTreeSettings<O,D> settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkCoPTreeIndex.relation
Relation indexed
|
Modifier and Type | Method and Description |
---|---|
MkCoPTreeIndex<O,D> |
MkCopTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkCoPTree(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pagefile,
MkTreeSettings<O,D,MkCoPTreeNode<O,D>,MkCoPEntry> settings)
Constructor.
|
MkCoPTreeIndex(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pageFile,
MkTreeSettings<O,D,MkCoPTreeNode<O,D>,MkCoPEntry> settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkMaxTreeIndex.relation
Relation indexed.
|
Modifier and Type | Method and Description |
---|---|
MkMaxTreeIndex<O,D> |
MkMaxTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkMaxTree(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
MkTreeSettings<O,D,MkMaxTreeNode<O,D>,MkMaxEntry> settings)
Constructor.
|
MkMaxTreeIndex(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
MkTreeSettings<O,D,MkMaxTreeNode<O,D>,MkMaxEntry> settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkTabTreeIndex.relation
The relation indexed.
|
Modifier and Type | Method and Description |
---|---|
MkTabTreeIndex<O,D> |
MkTabTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkTabTree(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
MkTreeSettings<O,D,MkTabTreeNode<O,D>,MkTabEntry> settings)
Constructor.
|
MkTabTreeIndex(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
MkTreeSettings<O,D,MkTabTreeNode<O,D>,MkTabEntry> settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MTreeIndex.relation
The relation indexed.
|
Modifier and Type | Method and Description |
---|---|
MTreeIndex<O,D> |
MTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MTreeIndex(Relation<O> relation,
PageFile<MTreeNode<O,D>> pagefile,
MTreeSettings<O,D,MTreeNode<O,D>,MTreeEntry> settings)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
MinimalisticMemoryKDTree<O> |
MinimalisticMemoryKDTree.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MinimalisticMemoryKDTree(Relation<O> relation)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
DeLiCluTreeIndex.relation
The relation we index.
|
Modifier and Type | Method and Description |
---|---|
DeLiCluTreeIndex<O> |
DeLiCluTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
DeLiCluTreeIndex(Relation<O> relation,
PageFile<DeLiCluNode> pagefile,
AbstractRTreeSettings settings)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
RStarTreeIndex.relation
Relation
|
Modifier and Type | Method and Description |
---|---|
RStarTreeIndex<O> |
RStarTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
RStarTreeIndex(Relation<O> relation,
PageFile<RStarTreeNode> pagefile,
AbstractRTreeSettings settings)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected static BitSet |
PartialVAFile.fakeSubspace(Relation<? extends NumberVector<?>> relation)
Fake subspace (full-dimensional).
|
PartialVAFile<V> |
PartialVAFile.Factory.instantiate(Relation<V> relation) |
VAFile<V> |
VAFile.Factory.instantiate(Relation<V> relation) |
void |
VAFile.setPartitions(Relation<V> relation)
Initialize the data set grid by computing quantiles.
|
Constructor and Description |
---|
DAFile(Relation<? extends NumberVector<?>> relation,
int dimension,
int partitions)
Constructor.
|
PartialVAFile(int pageSize,
Relation<V> relation,
int partitions)
Constructor.
|
VAFile(int pageSize,
Relation<V> relation,
int partitions)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private ArrayList<ArrayList<DBIDs>> |
MCEDimensionSimilarity.buildPartitions(Relation<? extends NumberVector<?>> relation,
DBIDs ids,
int depth,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list.
|
private double |
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector<?>> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
void |
SlopeInversionDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SlopeDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
CovarianceDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HiCSDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HSMDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SURFINGDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
MCEDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
DimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends V> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix
|
Modifier and Type | Method and Description |
---|---|
<F extends NumberVector<?>> |
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector.
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?>> relation)
Static Constructor from a relation.
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static Constructor from a relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?>> relation)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?>> relation)
Static Constructor from a full relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static Constructor from a full relation.
|
<F extends NumberVector<?>> |
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database.
|
Matrix |
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database.
|
PCAResult |
PCARunner.processDatabase(Relation<? extends V> database)
Run PCA on the complete database.
|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs.
|
PCAFilteredResult |
PCAFilteredAutotuningRunner.processIds(DBIDs ids,
Relation<? extends V> database) |
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs.
|
PCAResult |
PCARunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs.
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> relation)
Weighted Covariance Matrix for a set of IDs.
|
PCAFilteredResult |
PCAFilteredRunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs.
|
Matrix |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> relation) |
<D extends NumberDistance<D,?>> |
PCAFilteredAutotuningRunner.processQueryResult(DistanceDBIDList<D> results,
Relation<? extends V> database) |
<D extends NumberDistance<D,?>> |
PCARunner.processQueryResult(DistanceDBIDList<D> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
PCAFilteredRunner.processQueryResult(DistanceDBIDList<D> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Modifier and Type | Method and Description |
---|---|
static <O extends NumberVector<? extends Number>> |
Scales.calcScales(Relation<O> db)
Compute a linear scale for each dimension.
|
Constructor and Description |
---|
ZCurveTransformer(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static List<Relation<?>> |
ResultUtil.getRelations(Result r)
Collect all Annotation results from a Result
|
Modifier and Type | Method and Description |
---|---|
static SamplingResult |
ResultUtil.getSamplingResult(Relation<?> rel)
Get the sampling result attached to a relation
|
static ScalesResult |
ResultUtil.getScalesResult(Relation<? extends NumberVector<?>> rel)
Get (or create) a scales result for a relation.
|
Modifier and Type | Method and Description |
---|---|
private StringBuilder |
KMLOutputHandler.makeDescription(Collection<Relation<?>> relations,
DBIDRef id)
Make an HTML description.
|
Constructor and Description |
---|
SamplingResult(Relation<?> rel)
Constructor.
|
ScalesResult(Relation<? extends NumberVector<?>> relation)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ClusterOrderResult.PredecessorAdapter
Result containing the predecessor ID.
|
(package private) class |
ClusterOrderResult.ReachabilityDistanceAdapter
Result containing the reachability distances.
|
Modifier and Type | Field and Description |
---|---|
private Relation<Double> |
OutlierResult.scores
Outlier scores.
|
protected Relation<Double> |
OrderingFromRelation.scores
Outlier scores.
|
Modifier and Type | Method and Description |
---|---|
Relation<Double> |
OutlierResult.getScores()
Get the outlier scores association.
|
Constructor and Description |
---|
OrderingFromRelation(Relation<Double> scores)
Ascending constructor.
|
OrderingFromRelation(Relation<Double> scores,
boolean ascending)
Constructor for outlier orderings
|
OutlierResult(OutlierScoreMeta meta,
Relation<Double> scores)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBIDRef objID,
List<Relation<?>> ra) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
List<Relation<?>> ra) |
Modifier and Type | Field and Description |
---|---|
(package private) Relation<? extends O> |
DatabaseUtil.RelationObjectIterator.database
The database we use.
|
(package private) Relation<? extends O> |
DatabaseUtil.CollectionFromRelation.db
The database we query.
|
Modifier and Type | Method and Description |
---|---|
static Relation<String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels.
|
static Relation<String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.
|
static <V extends NumberVector<?>,T extends NumberVector<?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
Modifier and Type | Method and Description |
---|---|
static <NV extends NumberVector<?>> |
DatabaseUtil.computeMinMax(Relation<NV> relation)
Determines the minimum and maximum values in each dimension of all objects
stored in the given database.
|
static <V extends FeatureVector<?>> |
DatabaseUtil.dimensionality(Relation<V> relation)
Deprecated.
Use
RelationUtil.dimensionality(Relation) instead! |
static <V extends NumberVector<?>> |
DatabaseUtil.exactMedian(Relation<V> relation,
DBIDs ids,
int dimension)
Returns the median of a data set in the given dimension.
|
static <O> Class<?> |
DatabaseUtil.getBaseObjectClassExpensive(Relation<O> database)
Do a full inspection of the database to find the base object class.
|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database.
|
static <O> Class<? extends O> |
DatabaseUtil.guessObjectClass(Relation<O> database)
Do a cheap guess at the databases object class.
|
static <V extends NumberVector<?>> |
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling
method.
|
static <V extends NumberVector<?>,T extends NumberVector<?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?>> database,
NumberVector<?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
Constructor and Description |
---|
DatabaseUtil.CollectionFromRelation(Relation<? extends O> db)
Constructor.
|
DatabaseUtil.RelationObjectIterator(DBIDIter iter,
Relation<? extends O> database)
Full Constructor.
|
DatabaseUtil.RelationObjectIterator(Relation<? extends O> database)
Simplified constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends O> |
ReferencePointsHeuristic.getReferencePoints(Relation<T> db)
Get the reference points for the given database.
|
<T extends O> |
FullDatabaseReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
RandomSampleReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
RandomGeneratedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
GridBasedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
StarBasedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
AxisBasedReferencePoints.getReferencePoints(Relation<T> db) |
Modifier and Type | Method and Description |
---|---|
private double[] |
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
BitSet t,
Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
VisualizationTask.relation
The main representation
|
Modifier and Type | Method and Description |
---|---|
<R extends Relation<?>> |
VisualizationTask.getRelation() |
Constructor and Description |
---|
VisualizationTask(String name,
Result result,
Relation<?> relation,
VisFactory factory)
Visualization task.
|
VisualizationTask(String name,
VisualizerContext context,
Result result,
Relation<?> relation,
VisFactory factory,
Projection proj,
SVGPlot svgp,
double width,
double height)
Constructor
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<ClassLabel> |
SelectionTableWindow.crep
Class label representation
|
(package private) Relation<String> |
SelectionTableWindow.orep
Object label representation
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<V> |
ScatterPlotProjector.rel
Relation we project.
|
(package private) Relation<V> |
HistogramProjector.rel
Relation we project.
|
(package private) Relation<V> |
ParallelPlotProjector.rel
Relation we project.
|
Modifier and Type | Method and Description |
---|---|
Relation<V> |
ScatterPlotProjector.getRelation()
The relation we project.
|
Relation<V> |
HistogramProjector.getRelation()
Get the relation we project.
|
Relation<V> |
ParallelPlotProjector.getRelation()
The relation we project.
|
Constructor and Description |
---|
HistogramProjector(Relation<V> rel,
int maxdim)
Constructor.
|
ParallelPlotProjector(Relation<V> rel)
Constructor.
|
ScatterPlotProjector(Relation<V> rel,
int maxdim)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<NV> |
ColoredHistogramVisualizer.Instance.relation
The database we visualize
|
Modifier and Type | Field and Description |
---|---|
protected Relation<NV> |
AbstractParallelVisualization.relation
The representation we visualize
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends NumberVector<?>> |
AbstractScatterplotVisualization.rel
The representation we visualize
|
protected Relation<PolygonsObject> |
PolygonVisualization.Instance.rep
The representation we visualize
|
private Relation<?> |
TooltipStringVisualization.Instance.result
Number value to visualize
|
private Relation<? extends Number> |
TooltipScoreVisualization.Instance.result
Number value to visualize
|
Modifier and Type | Field and Description |
---|---|
protected Relation<Vector> |
COPVectorVisualization.Instance.result
The outlier result to visualize
|
Modifier and Type | Method and Description |
---|---|
protected WritableDataStore<SameSizeKMeansAlgorithm.Meta> |
SameSizeKMeansAlgorithm.initializeMeta(Relation<V> relation,
List<? extends NumberVector<?>> means)
Initialize the metadata storage.
|
protected List<? extends NumberVector<?>> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
PointerHierarchyRepresentationResult<DoubleDistance> |
NaiveAgglomerativeHierarchicalClustering4.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering3.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering1.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering2.run(Database db,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel<V>> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<? extends NumberVector<?>> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
PrimitiveDoubleDistanceFunction<NumberVector<?>> df)
Compute the distances of each object to all means.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
Tutorial note: the signature of this method depends on the types
that we requested in the
ODIN.getInputTypeRestriction() method. |
OutlierResult |
DistanceStddevOutlier.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm
|