
V - the type of NumberVector handled by this Algorithm@Title(value="PROCLUS: PROjected CLUStering") @Description(value="Algorithm to find subspace clusters in high dimensional spaces.") @Reference(authors="C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, J. S. Park", title="Fast Algorithms for Projected Clustering", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'99)", url="http://dx.doi.org/10.1145/304181.304188") public class PROCLUS<V extends NumberVector<?>> extends AbstractProjectedClustering<Clustering<SubspaceModel<V>>,V> implements SubspaceClusteringAlgorithm<SubspaceModel<V>>
| Modifier and Type | Class and Description |
|---|---|
static class |
PROCLUS.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
private class |
PROCLUS.PROCLUSCluster
Encapsulates the attributes of a cluster.
|
| Modifier and Type | Field and Description |
|---|---|
private static Logging |
LOG
The logger for this class.
|
private int |
m_i
Holds the value of
M_I_ID. |
static OptionID |
M_I_ID
Parameter to specify the multiplier for the initial number of medoids, must
be an integer greater than 0.
|
private RandomFactory |
rnd
Random generator
|
k, k_i, l| Constructor and Description |
|---|
PROCLUS(int k,
int k_i,
int l,
int m_i,
RandomFactory rnd)
Java constructor.
|
| Modifier and Type | Method and Description |
|---|---|
private Map<DBID,PROCLUS.PROCLUSCluster> |
assignPoints(Map<DBID,gnu.trove.set.TIntSet> dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private double |
avgDistance(V centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
private ModifiableDBIDs |
computeBadMedoids(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
private ModifiableDBIDs |
computeM_current(DBIDs m,
DBIDs m_best,
DBIDs m_bad,
Random random)
Computes the set of medoids in current iteration.
|
private double |
evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
Map<DBID,gnu.trove.set.TIntSet> dimensions,
Relation<V> database)
Evaluates the quality of the clusters.
|
private List<PROCLUS.PROCLUSCluster> |
finalAssignment(List<Pair<V,gnu.trove.set.TIntSet>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
private Map<DBID,gnu.trove.set.TIntSet> |
findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private List<Pair<V,gnu.trove.set.TIntSet>> |
findDimensions(List<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
private Map<DBID,DistanceDBIDList<DoubleDistance>> |
getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
private ModifiableDBIDs |
greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
private ModifiableDBIDs |
initialSet(DBIDs sampleSet,
int k,
Random random)
Returns a set of k elements from the specified sample set.
|
private DoubleDistance |
manhattanSegmentalDistance(V o1,
V o2,
gnu.trove.set.TIntSet dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the
specified dimensions.
|
Clustering<SubspaceModel<V>> |
run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
getDistanceFunction, getDistanceQuerymakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public static final OptionID M_I_ID
Default value: 10
Key: -proclus.mi
private int m_i
M_I_ID.private RandomFactory rnd
public PROCLUS(int k,
int k_i,
int l,
int m_i,
RandomFactory rnd)
k - k Parameterk_i - k_i Parameterl - l Parameterm_i - m_i Parameterrnd - Random generatorpublic Clustering<SubspaceModel<V>> run(Database database, Relation<V> relation)
database - Database to processrelation - Relation to processprivate ModifiableDBIDs greedy(DistanceQuery<V,DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random)
distFunc - the distance functionsampleSet - the sample setm - the number of medoids to be returnedrandom - random number generatorprivate ModifiableDBIDs initialSet(DBIDs sampleSet, int k, Random random)
sampleSet - the sample setk - the number of samples to be returnedrandom - random number generatorprivate ModifiableDBIDs computeM_current(DBIDs m, DBIDs m_best, DBIDs m_bad, Random random)
m - the medoidsm_best - the best set of medoids found so farm_bad - the bad medoidsrandom - random number generatorprivate Map<DBID,DistanceDBIDList<DoubleDistance>> getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
medoids - the ids of the medoidsdatabase - the database holding the objectsdistFunc - the distance functionprivate Map<DBID,gnu.trove.set.TIntSet> findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
medoids - the set of medoidsdatabase - the database containing the objectsdistFunc - the distance functionprivate List<Pair<V,gnu.trove.set.TIntSet>> findDimensions(List<PROCLUS.PROCLUSCluster> clusters, Relation<V> database)
clusters - the list of clustersdatabase - the database containing the objectsprivate Map<DBID,PROCLUS.PROCLUSCluster> assignPoints(Map<DBID,gnu.trove.set.TIntSet> dimensions, Relation<V> database)
dimensions - set of correlated dimensions for each medoid of the
clusterdatabase - the database containing the objectsprivate List<PROCLUS.PROCLUSCluster> finalAssignment(List<Pair<V,gnu.trove.set.TIntSet>> dimensions, Relation<V> database)
dimensions - pair containing the centroid and the set of correlated
dimensions for the centroiddatabase - the database containing the objectsprivate DoubleDistance manhattanSegmentalDistance(V o1, V o2, gnu.trove.set.TIntSet dimensions)
o1 - the first objecto2 - the second objectdimensions - the dimensions to be consideredprivate double evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters, Map<DBID,gnu.trove.set.TIntSet> dimensions, Relation<V> database)
clusters - the clusters to be evaluateddimensions - the dimensions associated with each clusterdatabase - the database holding the objectsprivate double avgDistance(V centroid, DBIDs objectIDs, Relation<V> database, int dimension)
centroid - the centroidobjectIDs - the set of objects idsdatabase - the database holding the objectsdimension - the dimension for which the average distance is computedprivate ModifiableDBIDs computeBadMedoids(Map<DBID,PROCLUS.PROCLUSCluster> clusters, int threshold)
clusters - the clustersthreshold - the thresholdpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<SubspaceModel<V extends NumberVector<?>>>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<SubspaceModel<V extends NumberVector<?>>>>