
V - vector type@Reference(authors="E. M\u00fcller, M. Schiffer, T. Seidl", title="Adaptive outlierness for subspace outlier ranking", booktitle="Proc. 19th ACM International Conference on Information and knowledge management") public class OUTRES<V extends NumberVector<?>> extends AbstractAlgorithm<OutlierResult> implements OutlierAlgorithm
E. Müller, M. Schiffer, T. Seidl
Adaptive outlierness for subspace outlier ranking
in: Proc. 19th ACM International Conference on Information and knowledge
management
| Modifier and Type | Class and Description |
|---|---|
protected class |
OUTRES.KernelDensityEstimator
Kernel density estimation and utility class.
|
static class |
OUTRES.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private double |
eps
The epsilon (in 2d) parameter
|
private static double |
K_S_CRITICAL001
Constant for Kolmogorov-Smirnov at alpha=0.01 (table value)
|
private static Logging |
LOG
The logger for this class.
|
| Constructor and Description |
|---|
OUTRES(double eps)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
double |
outresScore(int s,
BitSet subspace,
DBIDRef id,
OUTRES.KernelDensityEstimator kernel)
Main loop of OUTRES.
|
private DoubleDistanceDBIDList |
refineRange(DistanceDBIDList<DoubleDistance> neighc,
double adjustedEps)
Refine a range query.
|
protected boolean |
relevantSubspace(BitSet subspace,
DoubleDistanceDBIDList neigh,
OUTRES.KernelDensityEstimator kernel)
Subspace relevance test.
|
OutlierResult |
run(Relation<V> relation)
Main loop for OUTRES
|
private DoubleDistanceDBIDList |
subsetNeighborhoodQuery(DistanceDBIDList<DoubleDistance> neighc,
DBIDRef dbid,
PrimitiveDoubleDistanceFunction<? super V> df,
double adjustedEps,
OUTRES.KernelDensityEstimator kernel)
Refine neighbors within a subset.
|
makeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
private final double eps
private static final double K_S_CRITICAL001
public OutlierResult run(Relation<V> relation)
relation - Relation to processpublic double outresScore(int s,
BitSet subspace,
DBIDRef id,
OUTRES.KernelDensityEstimator kernel)
s - start dimensionsubspace - Current subspaceid - Current object IDkernel - Kernelprivate DoubleDistanceDBIDList refineRange(DistanceDBIDList<DoubleDistance> neighc, double adjustedEps)
neighc - Original resultadjustedEps - New epsilonprivate DoubleDistanceDBIDList subsetNeighborhoodQuery(DistanceDBIDList<DoubleDistance> neighc, DBIDRef dbid, PrimitiveDoubleDistanceFunction<? super V> df, double adjustedEps, OUTRES.KernelDensityEstimator kernel)
neighc - Neighbor candidatesdbid - Query objectdf - distance functionadjustedEps - Epsilon rangekernel - Kernelprotected boolean relevantSubspace(BitSet subspace, DoubleDistanceDBIDList neigh, OUTRES.KernelDensityEstimator kernel)
subspace - Subspace to testneigh - Neighbor listkernel - Kernel density estimatorprotected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<OutlierResult>public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>