
V - Vector typepublic class SampleKMeansInitialization<V extends NumberVector<?>,D extends Distance<?>> extends AbstractKMeansInitialization<V>
| Modifier and Type | Class and Description |
|---|---|
static class |
SampleKMeansInitialization.Parameterizer<V extends NumberVector<?>,D extends Distance<?>>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private KMeans<V,D,?> |
innerkMeans
Variant of kMeans for the bisecting step.
|
private double |
rate
Sample size.
|
rnd| Constructor and Description |
|---|
SampleKMeansInitialization(RandomFactory rnd,
KMeans<V,D,?> innerkMeans,
double rate)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
List<V> |
chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction)
Choose initial means
|
private KMeans<V extends NumberVector<?>,D extends Distance<?>,?> innerkMeans
private double rate
public SampleKMeansInitialization(RandomFactory rnd, KMeans<V,D,?> innerkMeans, double rate)
rnd - Random generator.innerkMeans - Inner k-means algorithm.rate - Sampling rate.public List<V> chooseInitialMeans(Database database, Relation<V> relation, int k, PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction)
KMeansInitializationdatabase - Database contextrelation - Relationk - Parameter kdistanceFunction - Distance function