See: Description

| Interface | Description |
|---|---|
| KMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Some constants and options shared among kmeans family algorithms.
|
| KMeansInitialization<V> |
Interface for initializing K-Means
|
| KMedoidsInitialization<V> |
Interface for initializing K-Medoids.
|
| Class | Description |
|---|---|
| AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>> |
Abstract base class for k-means implementations.
|
| AbstractKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| AbstractKMeansInitialization<V> |
Abstract base class for common k-means initializations.
|
| AbstractKMeansInitialization.Parameterizer<V> |
Parameterization class.
|
| BestOfMultipleKMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Run K-Means multiple times, and keep the best run.
|
| BestOfMultipleKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>> |
Parameterization class.
|
| FarthestPointsInitialMeans<V,D extends NumberDistance<D,?>> |
K-Means initialization by repeatedly choosing the farthest point.
|
| FarthestPointsInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
| FirstKInitialMeans<V> |
Initialize K-means by using the first k objects as initial means.
|
| FirstKInitialMeans.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
| KMeansBatchedLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
| KMeansBatchedLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
| KMeansBisecting.Parameterizer<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Parameterization class.
|
| KMeansHybridLloydMacQueen<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, alternating between MacQueen-style
incremental processing and Lloyd-Style batch steps.
|
| KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
| KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using MacQueen style incremental updates.
|
| KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>> |
K-Means++ initialization for k-means.
|
| KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
| KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-medians clustering algorithm, using Lloyd-style bulk
iterations.
|
| KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
| KMedoidsEM<V,D extends NumberDistance<D,?>> |
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
"Partitioning Around Medoids" approach.
|
| KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
| KMedoidsPAM<V,D extends NumberDistance<D,?>> |
Provides the k-medoids clustering algorithm, using the
"Partitioning Around Medoids" approach.
|
| KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
| PAMInitialMeans<V,D extends NumberDistance<D,?>> |
PAM initialization for k-means (and of course, PAM).
|
| PAMInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
| RandomlyChosenInitialMeans<V> |
Initialize K-means by randomly choosing k exsiting elements as cluster
centers.
|
| RandomlyChosenInitialMeans.Parameterizer<V> |
Parameterization class.
|
| RandomlyGeneratedInitialMeans<V extends NumberVector<?>> |
Initialize k-means by generating random vectors (within the data sets value
range).
|
| RandomlyGeneratedInitialMeans.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
| SampleKMeansInitialization<V extends NumberVector<?>,D extends Distance<?>> |
Initialize k-means by running k-means on a sample of the data set only.
|
| SampleKMeansInitialization.Parameterizer<V extends NumberVector<?>,D extends Distance<?>> |
Parameterization class.
|
K-means clustering and variations.