See: Description
Interface | Description |
---|---|
KMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Some constants and options shared among kmeans family algorithms.
|
KMeansInitialization<V> |
Interface for initializing K-Means
|
KMedoidsInitialization<V> |
Interface for initializing K-Medoids.
|
Class | Description |
---|---|
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>> |
Abstract base class for k-means implementations.
|
AbstractKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
AbstractKMeansInitialization<V> |
Abstract base class for common k-means initializations.
|
AbstractKMeansInitialization.Parameterizer<V> |
Parameterization class.
|
BestOfMultipleKMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Run K-Means multiple times, and keep the best run.
|
BestOfMultipleKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>> |
Parameterization class.
|
FarthestPointsInitialMeans<V,D extends NumberDistance<D,?>> |
K-Means initialization by repeatedly choosing the farthest point.
|
FarthestPointsInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
FirstKInitialMeans<V> |
Initialize K-means by using the first k objects as initial means.
|
FirstKInitialMeans.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
KMeansBatchedLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
KMeansBatchedLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
KMeansBisecting.Parameterizer<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> |
Parameterization class.
|
KMeansHybridLloydMacQueen<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, alternating between MacQueen-style
incremental processing and Lloyd-Style batch steps.
|
KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-means algorithm, using MacQueen style incremental updates.
|
KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>> |
K-Means++ initialization for k-means.
|
KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>> |
Provides the k-medians clustering algorithm, using Lloyd-style bulk
iterations.
|
KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> |
Parameterization class.
|
KMedoidsEM<V,D extends NumberDistance<D,?>> |
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
"Partitioning Around Medoids" approach.
|
KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
KMedoidsPAM<V,D extends NumberDistance<D,?>> |
Provides the k-medoids clustering algorithm, using the
"Partitioning Around Medoids" approach.
|
KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
PAMInitialMeans<V,D extends NumberDistance<D,?>> |
PAM initialization for k-means (and of course, PAM).
|
PAMInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> |
Parameterization class.
|
RandomlyChosenInitialMeans<V> |
Initialize K-means by randomly choosing k exsiting elements as cluster
centers.
|
RandomlyChosenInitialMeans.Parameterizer<V> |
Parameterization class.
|
RandomlyGeneratedInitialMeans<V extends NumberVector<?>> |
Initialize k-means by generating random vectors (within the data sets value
range).
|
RandomlyGeneratedInitialMeans.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
SampleKMeansInitialization<V extends NumberVector<?>,D extends Distance<?>> |
Initialize k-means by running k-means on a sample of the data set only.
|
SampleKMeansInitialization.Parameterizer<V extends NumberVector<?>,D extends Distance<?>> |
Parameterization class.
|
K-means clustering and variations.