
public class PolynomialKernelFunction extends AbstractVectorDoubleSimilarityFunction implements PrimitiveDoubleDistanceFunction<NumberVector<?>>
| Modifier and Type | Class and Description |
|---|---|
static class |
PolynomialKernelFunction.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private double |
bias
Bias of the similarity function.
|
static int |
DEFAULT_DEGREE
The default degree.
|
private int |
degree
Degree of the polynomial kernel function.
|
| Constructor and Description |
|---|
PolynomialKernelFunction(int degree)
Constructor.
|
PolynomialKernelFunction(int degree,
double bias)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
DoubleDistance |
distance(NumberVector<?> fv1,
NumberVector<?> fv2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
double |
doubleDistance(NumberVector<?> fv1,
NumberVector<?> fv2)
Computes the distance between two given Objects according to this distance
function.
|
double |
doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2)
Computes the similarity between two given Objects according to this
similarity function.
|
<T extends NumberVector<?>> |
instantiate(Relation<T> database)
Instantiate with a representation to get the actual similarity query.
|
boolean |
isMetric()
Is this distance function metric (in particular, does it satisfy the
triangle equation?)
|
getDistanceFactory, getInputTypeRestriction, similarityisSymmetricclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetInputTypeRestrictiongetDistanceFactory, isSymmetricisSymmetricpublic static final int DEFAULT_DEGREE
private final int degree
private final double bias
public PolynomialKernelFunction(int degree,
double bias)
degree - Kernel degreebias - Bias offsetpublic PolynomialKernelFunction(int degree)
degree - Kernel degreepublic double doubleSimilarity(NumberVector<?> o1, NumberVector<?> o2)
PrimitiveDoubleSimilarityFunctiondoubleSimilarity in interface PrimitiveDoubleSimilarityFunction<NumberVector<?>>o1 - first Objecto2 - second Objectpublic DoubleDistance distance(NumberVector<?> fv1, NumberVector<?> fv2)
PrimitiveDistanceFunctiondistance in interface PrimitiveDistanceFunction<NumberVector<?>,DoubleDistance>fv1 - first DatabaseObjectfv2 - second DatabaseObjectpublic boolean isMetric()
DistanceFunctionisMetric in interface DistanceFunction<NumberVector<?>,DoubleDistance>true when metric.public double doubleDistance(NumberVector<?> fv1, NumberVector<?> fv2)
PrimitiveDoubleDistanceFunctiondoubleDistance in interface PrimitiveDoubleDistanceFunction<NumberVector<?>>fv1 - first Objectfv2 - second Objectpublic <T extends NumberVector<?>> DistanceSimilarityQuery<T,DoubleDistance> instantiate(Relation<T> database)
SimilarityFunctioninstantiate in interface DistanceFunction<NumberVector<?>,DoubleDistance>instantiate in interface SimilarityFunction<NumberVector<?>,DoubleDistance>instantiate in class AbstractPrimitiveSimilarityFunction<NumberVector<?>,DoubleDistance>database - Representation to use