Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique |
Helper classes for the
CLIQUE algorithm. |
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.projection |
Data projections.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.datasource.filter |
Data filtering, in particular for normalization and projection.
|
de.lmu.ifi.dbs.elki.datasource.filter.normalization |
Data normalization.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space L_p norms such as the popular Euclidean and Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.roc |
Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve)
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfunctions |
Hash functions for LSH
|
de.lmu.ifi.dbs.elki.index.preprocessed |
Index structure based on preprocessors
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data.
|
de.lmu.ifi.dbs.elki.index.tree.spatial |
Tree-based index structures for spatial indexing.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants |
R*-Tree and variants.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections |
Random projection families.
|
de.lmu.ifi.dbs.elki.math.scales |
Scales handling for plotting.
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.referencepoints |
Package containing strategies to obtain reference points
Shared code for various algorithms that use reference points.
|
de.lmu.ifi.dbs.elki.visualization.projections |
Visualization projections
|
de.lmu.ifi.dbs.elki.visualization.projector |
Projectors are responsible for finding appropriate projections for data relations.
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...).
|
de.lmu.ifi.dbs.elki.visualization.visualizers.histogram |
Visualizers based on 1D projected histograms.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel |
Visualizers based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster |
Visualizers for clustering results based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot |
Visualizers based on scatterplots.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.distancefunction |
Classes from the tutorial on implementing distance functions.
|
Modifier and Type | Class and Description |
---|---|
class |
DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among
attributes of a given dataset based on a linear correlation PCA.
|
static class |
DependencyDerivator.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
DummyAlgorithm<O extends NumberVector<?>>
Dummy algorithm, which just iterates over all points once, doing a 10NN query
each.
|
class |
KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors.
|
static class |
KNNJoin.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Benchmarking algorithm that computes a range query for each point.
|
static class |
RangeQueryBenchmarkAlgorithm.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class
|
Modifier and Type | Method and Description |
---|---|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector<?>> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
static class |
AbstractProjectedDBSCAN.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
density-connected sets in a database.
|
static class |
DeLiClu.Parameterizer<NV extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
EM<V extends NumberVector<?>>
Provides the EM algorithm (clustering by expectation maximization).
|
static class |
EM.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Mean-shift based clustering algorithm.
|
static class |
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterizer.
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector<?>> relation,
double[] normDistrFactor,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector<?>> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] covarianceMatrices,
int dimensionality)
Recompute the covariance matrixes.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBiclustering<V extends NumberVector<?>,M extends BiclusterModel>
Abstract class as a convenience for different biclustering approaches.
|
class |
ChengAndChurch<V extends NumberVector<?>>
Perform Cheng and Church biclustering.
|
static class |
ChengAndChurch.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH<V extends NumberVector<?>>
Provides the CASH algorithm, an subspace clustering algorithm based on the
Hough transform.
|
class |
COPAC<V extends NumberVector<?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according
to the correlation dimension of its objects and to then perform an arbitrary
clustering algorithm over the partitions.
|
static class |
COPAC.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
ERiC<V extends NumberVector<?>>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
static class |
ERiC.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
FourC<V extends NumberVector<?>>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
static class |
FourC.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
HiCO<V extends NumberVector<?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
of correlation clusters.
|
static class |
HiCO.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
ORCLUS<V extends NumberVector<?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
dimensional spaces.
|
static class |
ORCLUS.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) V |
ORCLUS.ORCLUSCluster.centroid
The centroid of this cluster.
|
Modifier and Type | Method and Description |
---|---|
protected CASH<NumberVector<?>> |
CASH.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
private LMCLUS.Separation |
LMCLUS.findSeparation(Relation<NumberVector<?>> relation,
DBIDs currentids,
int dimension,
Random r)
This method samples a number of linear manifolds an tries to determine
which the one with the best cluster is.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector<?>> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Modifier and Type | Field and Description |
---|---|
private NumberVector<?> |
ParameterizationFunction.vec
The actual vector.
|
Constructor and Description |
---|
ParameterizationFunction(NumberVector<?> vec)
Provides a new parameterization function describing all lines in a
d-dimensional feature space intersecting in one point p.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations.
|
static class |
AbstractKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
BestOfMultipleKMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Run K-Means multiple times, and keep the best run.
|
static class |
BestOfMultipleKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Parameterization class.
|
static class |
FirstKInitialMeans.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
interface |
KMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Some constants and options shared among kmeans family algorithms.
|
class |
KMeansBatchedLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
static class |
KMeansBatchedLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
static class |
KMeansBisecting.Parameterizer<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Parameterization class.
|
class |
KMeansHybridLloydMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, alternating between MacQueen-style
incremental processing and Lloyd-Style batch steps.
|
static class |
KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
static class |
KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using MacQueen style incremental updates.
|
static class |
KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-medians clustering algorithm, using Lloyd-style bulk
iterations.
|
static class |
KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
RandomlyGeneratedInitialMeans<V extends NumberVector<?>>
Initialize k-means by generating random vectors (within the data sets value
range).
|
static class |
RandomlyGeneratedInitialMeans.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
SampleKMeansInitialization<V extends NumberVector<?>,D extends Distance<?>>
Initialize k-means by running k-means on a sample of the data set only.
|
static class |
SampleKMeansInitialization.Parameterizer<V extends NumberVector<?>,D extends Distance<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
protected List<NumberVector<?>> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
DBIDs ids,
List<? extends NumberVector<?>> oldmeans,
double[][] meanshift,
int[] changesize,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.assignToNearestCluster(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment)
Returns a list of clusters.
|
List<V> |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction)
Choose initial means
|
List<V> |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
List<V> |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<V> relation,
int k,
PrimitiveDistanceFunction<? super NumberVector<?>,?> distanceFunction) |
protected List<Vector> |
AbstractKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
protected List<NumberVector<?>> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
void |
KMeansBisecting.setDistanceFunction(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction) |
void |
KMeans.setDistanceFunction(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction)
Set the distance function to use.
|
void |
BestOfMultipleKMeans.setDistanceFunction(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction) |
void |
AbstractKMeans.setDistanceFunction(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction) |
Constructor and Description |
---|
AbstractKMeans(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMeansBatchedLloyd(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer,
int blocks,
RandomFactory random)
Constructor.
|
KMeansHybridLloydMacQueen(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMeansLloyd(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMeansMacQueen(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMediansLloyd(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
KMeansQualityMeasure<O extends NumberVector<?>,D extends Distance<?>>
Interface for computing the quality of a K-Means clustering.
|
Modifier and Type | Method and Description |
---|---|
<V extends NumberVector<?>> |
WithinClusterVarianceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
<V extends NumberVector<?>> |
WithinClusterMeanDistanceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
Modifier and Type | Class and Description |
---|---|
class |
KNNKernelDensityMinimaClustering<V extends NumberVector<?>>
Cluster one-dimensional data by splitting the data set on local minima after
performing kernel density estimation.
|
static class |
KNNKernelDensityMinimaClustering.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector<?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
static class |
CLIQUE.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
DiSH<V extends NumberVector<?>>
Algorithm for detecting subspace hierarchies.
|
static class |
DiSH.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
DOC<V extends NumberVector<?>>
Provides the DOC algorithm, and it's heuristic variant, FastDOC.
|
static class |
DOC.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
HiSC<V extends NumberVector<?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
of subspace clusters.
|
static class |
HiSC.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
P3C<V extends NumberVector<?>>
P3C: A Robust Projected Clustering Algorithm.
|
static class |
P3C.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
PreDeCon<V extends NumberVector<?>>
PreDeCon computes clusters of subspace preference weighted connected points.
|
static class |
PreDeCon.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
PROCLUS<V extends NumberVector<?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
high dimensional spaces.
|
static class |
PROCLUS.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
SUBCLU<V extends NumberVector<?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
static class |
SUBCLU.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) V |
PROCLUS.PROCLUSCluster.centroid
The centroids of this cluster along each dimension.
|
Modifier and Type | Class and Description |
---|---|
class |
CLIQUESubspace<V extends NumberVector<?>>
Represents a subspace of the original data space in the CLIQUE algorithm.
|
class |
CLIQUEUnit<V extends NumberVector<?>>
Represents a unit in the CLIQUE algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
ABOD<V extends NumberVector<?>>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
ABOD.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
AbstractAggarwalYuOutlier<V extends NumberVector<?>>
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
class |
AggarwalYuEvolutionary<V extends NumberVector<?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
detect outliers for high dimensional data.
|
static class |
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
AggarwalYuNaive<V extends NumberVector<?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of
dimensions are examined and calculates the sparsity coefficient to find
outliers.
|
static class |
AggarwalYuNaive.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. |
static class |
COP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
EMOutlier<V extends NumberVector<?>>
outlier detection algorithm using EM Clustering.
|
static class |
EMOutlier.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
FastABOD<V extends NumberVector<?>>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
FastABOD.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
GaussianModel<V extends NumberVector<?>>
Outlier have smallest GMOD_PROB: the outlier scores is the
probability density of the assumed distribution.
|
static class |
GaussianModel.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
GaussianUniformMixture<V extends NumberVector<?>>
Outlier detection algorithm using a mixture model approach.
|
static class |
GaussianUniformMixture.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
HilOut<O extends NumberVector<?>>
Fast Outlier Detection in High Dimensional Spaces
Outlier Detection using Hilbert space filling curves
Reference:
F.
|
static class |
HilOut.Parameterizer<O extends NumberVector<?>>
Parameterization class
|
class |
LBABOD<V extends NumberVector<?>>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
LBABOD.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
static class |
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Algorithm to compute local correlation outlier probability.
|
static class |
SimpleCOP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private double |
HilOut.HilbertFeatures.getDimForObject(NumberVector<?> obj,
int dim)
Get the (projected) position of the object in dimension dim.
|
Modifier and Type | Class and Description |
---|---|
class |
ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "approximate Local Correlation Integral".
|
static class |
ALOCI.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Outlier Detection with Kernel Density Functions.
|
static class |
LDF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
A simple variant of the LOF algorithm, which uses a simple kernel density
estimation instead of the local reachability density.
|
static class |
SimpleKernelDensityLOF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector<?>> |
ALOCI.ALOCIQuadTree.relation
Relation indexed.
|
Modifier and Type | Method and Description |
---|---|
ALOCI.Node |
ALOCI.ALOCIQuadTree.findClosestNode(NumberVector<?> vec,
int tlevel)
Find the closest node (of depth tlevel or above, if there is no node at
this depth) for the given vector.
|
private double |
ALOCI.ALOCIQuadTree.getShiftedDim(NumberVector<?> obj,
int dim,
int level)
Shift and wrap a single dimension.
|
Constructor and Description |
---|
ALOCI.ALOCIQuadTree(double[] min,
double[] max,
double[] shift,
int nmin,
Relation<? extends NumberVector<?>> relation)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
HiCS<V extends NumberVector<?>>
Algorithm to compute High Contrast Subspaces for Density-Based Outlier
Ranking.
|
static class |
HiCS.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCS.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private void |
HiCS.calculateContrast(Relation<? extends NumberVector<?>> relation,
HiCS.HiCSSubspace subspace,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Calculates the actual contrast of a given subspace.
|
private Set<HiCS.HiCSSubspace> |
HiCS.calculateSubspaces(Relation<? extends NumberVector<?>> relation,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Identifies high contrast subspaces in a given full-dimensional database.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector<?>> relation)
Run the algorithm on a data set.
|
Modifier and Type | Class and Description |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
static class |
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class
|
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector<?>>
Mean Approach is used to discover spatial outliers with multiple attributes.
|
static class |
CTLuMeanMultipleAttributes.Parameterizer<N,O extends NumberVector<?>>
Parameterization class.
|
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector<?>>
Median Approach is used to discover spatial outliers with multiple
attributes.
|
static class |
CTLuMedianMultipleAttributes.Parameterizer<N,O extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run the algorithm
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?>> relation)
Run the algorithm.
|
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?>> relation)
Main method.
|
private Pair<DBIDVar,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?>> relationy)
Run a single iteration of the GLS-SOD modeling step
|
Modifier and Type | Class and Description |
---|---|
class |
OUTRES<V extends NumberVector<?>>
Adaptive outlierness for subspace outlier ranking (OUTRES).
|
static class |
OUTRES.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Subspace Outlier Degree.
|
static class |
SOD.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector<?>> relation,
Vector center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialAverageCoordinateOutlier.run(Relation<? extends NumberVector<?>> relation)
Run the actual algorithm.
|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector<?>> vecs,
Relation<?> labels)
Run the algorithm
|
Modifier and Type | Class and Description |
---|---|
static class |
AveragePrecisionAtK.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
static class |
EvaluateRankingQuality.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private ScalesResult |
AddSingleScale.run(Relation<? extends NumberVector<?>> rel)
Add scales to a single vector relation.
|
Modifier and Type | Class and Description |
---|---|
class |
ComputeKNNOutlierScores<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Application that runs a series of kNN-based algorithms on a data set, for
building an ensemble in a second step.
|
static class |
ComputeKNNOutlierScores.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector<?>> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector<?>> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
private PrimitiveDoubleDistanceFunction<NumberVector<?>> |
GreedyEnsembleExperiment.getDistanceFunction(double[] estimated_weights) |
Modifier and Type | Method and Description |
---|---|
protected void |
GreedyEnsembleExperiment.singleEnsemble(double[] ensemble,
NumberVector<?> vec)
Build a single-element "ensemble".
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector<?>> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector<?>> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
Modifier and Type | Interface and Description |
---|---|
static interface |
NumberVector.Factory<V extends NumberVector<? extends N>,N extends Number>
Factory API for this feature vector.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SparseNumberVector<N extends Number>
Combines the SparseFeatureVector and NumberVector.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractNumberVector<N extends Number>
AbstractNumberVector is an abstract implementation of FeatureVector.
|
class |
BitVector
Provides a BitVector wrapping a BitSet.
|
class |
ByteVector
A ByteVector stores the data using bytes.
|
class |
DoubleVector
A DoubleVector is to store real values approximately as double values.
|
class |
FloatVector
A FloatVector is to store real values with lower memory requirements by using
float values.
|
class |
IntegerVector
An IntegerVector is to store integer values.
|
class |
OneDimensionalDoubleVector
Specialized class implementing a one-dimensional double vector without using
an array.
|
class |
ShortVector
An ShortVector is to store Short values.
|
class |
SparseByteVector
A SparseByteVector is to store real values as double values.
|
class |
SparseDoubleVector
A SparseDoubleVector is to store real values as double values.
|
class |
SparseFloatVector
A SparseFloatVector is to store real values approximately as float values.
|
class |
SparseIntegerVector
A SparseIntegerVector is to store real values as double values.
|
class |
SparseShortVector
A SparseShortVector is to store real values as double values.
|
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector<?>> |
VectorUtil.SortDBIDsBySingleDimension.data
The relation to sort.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<?>> |
VectorUtil.project(V v,
BitSet selectedAttributes,
NumberVector.Factory<V,?> factory)
Provides a new NumberVector as a projection on the specified attributes.
|
static <V extends NumberVector<?>> |
VectorUtil.randomVector(NumberVector.Factory<V,?> factory,
int dim)
Produce a new vector based on random numbers in [0:1].
|
static <V extends NumberVector<?>> |
VectorUtil.randomVector(NumberVector.Factory<V,?> factory,
int dim,
Random r)
Produce a new vector based on random numbers in [0:1].
|
Modifier and Type | Method and Description |
---|---|
static double |
VectorUtil.angle(NumberVector<?> v1,
NumberVector<?> v2,
NumberVector<?> o)
Compute the angle between two vectors.
|
static double |
VectorUtil.angle(NumberVector<?> v1,
NumberVector<?> v2,
NumberVector<?> o)
Compute the angle between two vectors.
|
static double |
VectorUtil.angle(NumberVector<?> v1,
NumberVector<?> v2,
NumberVector<?> o)
Compute the angle between two vectors.
|
static double |
VectorUtil.angle(NumberVector<?> v1,
NumberVector<?> v2,
Vector o)
Compute the angle between two vectors.
|
static double |
VectorUtil.angle(NumberVector<?> v1,
NumberVector<?> v2,
Vector o)
Compute the angle between two vectors.
|
int |
VectorUtil.SortVectorsBySingleDimension.compare(NumberVector<?> o1,
NumberVector<?> o2) |
int |
VectorUtil.SortVectorsBySingleDimension.compare(NumberVector<?> o1,
NumberVector<?> o2) |
static double |
VectorUtil.cosAngle(NumberVector<?> v1,
NumberVector<?> v2)
Compute the absolute cosine of the angle between two vectors.
|
static double |
VectorUtil.cosAngle(NumberVector<?> v1,
NumberVector<?> v2)
Compute the absolute cosine of the angle between two vectors.
|
static double[] |
VectorUtil.fastTimes(Matrix mat,
NumberVector<?> v)
This is an ugly hack, but we don't want to have the
Matrix class
depend on NumberVector . |
static DoubleMinMax |
VectorUtil.getRangeDouble(NumberVector<?> vec)
Return the range across all dimensions.
|
static double |
VectorUtil.scalarProduct(NumberVector<?> d1,
NumberVector<?> d2)
Provides the scalar product (inner product) of this and the given
DoubleVector.
|
static double |
VectorUtil.scalarProduct(NumberVector<?> d1,
NumberVector<?> d2)
Provides the scalar product (inner product) of this and the given
DoubleVector.
|
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorUtil.computeMedoid(Relation<? extends NumberVector<?>> relation,
DBIDs sample)
Compute medoid for a given subset.
|
Constructor and Description |
---|
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector<?>> data)
Constructor.
|
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector<?>> data,
int dim)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
CorrelationAnalysisSolution<V extends NumberVector<?>>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
class |
KMeansModel<V extends NumberVector<?>>
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
Modifier and Type | Class and Description |
---|---|
class |
LatLngToECEFProjection<V extends NumberVector<?>>
Project (Latitude, Longitude) vectors to (X, Y, Z), from spherical
coordinates to ECEF (earth-centered earth-fixed).
|
class |
LngLatToECEFProjection<V extends NumberVector<?>>
Project (Longitude, Latitude) vectors to (X, Y, Z), from spherical
coordinates to ECEF (earth-centered earth-fixed).
|
class |
NumericalFeatureSelection<V extends NumberVector<?>>
Projection class for number vectors.
|
static class |
NumericalFeatureSelection.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
RandomProjection<V extends NumberVector<?>>
Randomized projections of the data.
|
Modifier and Type | Method and Description |
---|---|
protected LatLngToECEFProjection<NumberVector<?>> |
LatLngToECEFProjection.Parameterizer.makeInstance() |
protected RandomProjection<NumberVector<?>> |
RandomProjection.Parameterizer.makeInstance() |
protected LngLatToECEFProjection<NumberVector<?>> |
LngLatToECEFProjection.Parameterizer.makeInstance() |
Modifier and Type | Field and Description |
---|---|
static VectorFieldTypeInformation<NumberVector<?>> |
TypeUtil.NUMBER_VECTOR_FIELD
Input type for algorithms that require number vector fields.
|
static SimpleTypeInformation<? super NumberVector<?>> |
TypeUtil.NUMBER_VECTOR_VARIABLE_LENGTH
Number vectors of variable length.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<? extends N>,N extends Number> |
RelationUtil.getNumberVectorFactory(Relation<V> relation)
Get the number vector factory of a database relation.
|
Modifier and Type | Method and Description |
---|---|
static double[][] |
RelationUtil.relationAsMatrix(Relation<? extends NumberVector<?>> relation,
ArrayDBIDs ids)
Copy a relation into a double matrix.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractVectorConversionFilter<I,O extends NumberVector<?>>
Abstract class for filters that produce number vectors.
|
class |
AbstractVectorStreamConversionFilter<I,O extends NumberVector<?>>
Abstract base class for streaming filters that produce vectors.
|
class |
HistogramJitterFilter<V extends NumberVector<?>>
Add Jitter, preserving the histogram properties (same sum, nonnegative).
|
class |
SplitNumberVectorFilter<V extends NumberVector<?>>
Split an existing column into two types.
|
static class |
SplitNumberVectorFilter.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<?>> |
FilterUtil.guessFactory(SimpleTypeInformation<V> in)
Try to guess the appropriate factory.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractNormalization<O extends NumberVector<?>>
Abstract super class for all normalizations.
|
class |
AbstractStreamNormalization<O extends NumberVector<?>>
Abstract super class for all normalizations.
|
class |
AttributeWiseCDFNormalization<V extends NumberVector<?>>
Class to perform and undo a normalization on real vectors by estimating the
distribution of values along each dimension independently, then rescaling
objects to the cumulative density function (CDF) value at the original
coordinate.
|
static class |
AttributeWiseCDFNormalization.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
AttributeWiseErfNormalization<O extends NumberVector<?>>
Attribute-wise Normalization using the error function.
|
class |
AttributeWiseMADNormalization<V extends NumberVector<?>>
Median Absolute Deviation is used for scaling the data set as follows:
First, the median, and median absolute deviation are computed in each axis.
|
class |
AttributeWiseMinMaxNormalization<V extends NumberVector<?>>
Class to perform and undo a normalization on real vectors with respect to
given minimum and maximum in each dimension.
|
static class |
AttributeWiseMinMaxNormalization.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
AttributeWiseVarianceNormalization<V extends NumberVector<?>>
Class to perform and undo a normalization on real vectors with respect to
given mean and standard deviation in each dimension.
|
static class |
AttributeWiseVarianceNormalization.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
LengthNormalization<V extends NumberVector<?>>
Class to perform a normalization on vectors to norm 1.
|
static class |
LengthNormalization.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
Double |
AttributeWiseCDFNormalization.Adapter.get(List<? extends NumberVector<?>> array,
int off) |
byte |
AttributeWiseCDFNormalization.Adapter.getByte(List<? extends NumberVector<?>> array,
int off) |
double |
AttributeWiseCDFNormalization.Adapter.getDouble(List<? extends NumberVector<?>> array,
int off) |
float |
AttributeWiseCDFNormalization.Adapter.getFloat(List<? extends NumberVector<?>> array,
int off) |
int |
AttributeWiseCDFNormalization.Adapter.getInteger(List<? extends NumberVector<?>> array,
int off) |
long |
AttributeWiseCDFNormalization.Adapter.getLong(List<? extends NumberVector<?>> array,
int off) |
short |
AttributeWiseCDFNormalization.Adapter.getShort(List<? extends NumberVector<?>> array,
int off) |
int |
AttributeWiseCDFNormalization.Adapter.size(List<? extends NumberVector<?>> array) |
Modifier and Type | Class and Description |
---|---|
class |
AbstractSupervisedProjectionVectorFilter<V extends NumberVector<?>>
Base class for supervised projection methods.
|
static class |
AbstractSupervisedProjectionVectorFilter.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
static class |
ClassicMultidimensionalScalingTransform.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
GlobalPrincipalComponentAnalysisTransform<O extends NumberVector<?>>
Apply principal component analysis to the data set.
|
static class |
GlobalPrincipalComponentAnalysisTransform.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
LatLngToECEFFilter<V extends NumberVector<?>>
Project a 2D data set (latitude, longitude) to a 3D coordinate system (X, Y,
Z), such that Euclidean distance is line-of-sight.
|
static class |
LatLngToECEFFilter.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
LinearDiscriminantAnalysisFilter<V extends NumberVector<?>>
Linear Discriminant Analysis (LDA) / Fisher's linear discriminant.
|
static class |
LinearDiscriminantAnalysisFilter.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
LngLatToECEFFilter<V extends NumberVector<?>>
Project a 2D data set (longitude, latitude) to a 3D coordinate system (X, Y,
Z), such that Euclidean distance is line-of-sight.
|
static class |
LngLatToECEFFilter.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
NumberVectorFeatureSelectionFilter<V extends NumberVector<?>>
Parser to project the ParsingResult obtained by a suitable base parser onto a
selected subset of attributes.
|
class |
NumberVectorRandomFeatureSelectionFilter<V extends NumberVector<?>>
Parser to project the ParsingResult obtained by a suitable base parser onto a
randomly selected subset of attributes.
|
Modifier and Type | Class and Description |
---|---|
class |
CategorialDataAsNumberVectorParser<V extends NumberVector<?>>
A very simple parser for categorial data, which will then be encoded as
numbers.
|
static class |
CategorialDataAsNumberVectorParser.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
NumberVectorLabelParser<V extends NumberVector<?>>
Provides a parser for parsing one point per line, attributes separated by
whitespace.
|
static class |
NumberVectorLabelParser.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected V |
NumberVectorLabelParser.curvec
Current vector.
|
Modifier and Type | Interface and Description |
---|---|
interface |
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors.
|
static interface |
FilteredLocalPCABasedDistanceFunction.Instance<T extends NumberVector<?>,I extends Index,D extends Distance<D>>
Instance produced by the distance function.
|
class |
LocallyWeightedDistanceFunction<V extends NumberVector<?>>
Provides a locally weighted distance function.
|
static class |
LocallyWeightedDistanceFunction.Instance<V extends NumberVector<?>>
Instance of this distance for a particular database.
|
static class |
LocallyWeightedDistanceFunction.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceNorm.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector<?>> |
ArcCosineDistanceFunction.getInputTypeRestriction() |
VectorFieldTypeInformation<? super NumberVector<?>> |
WeightedDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
AbstractVectorDoubleDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
CosineDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
static int |
AbstractVectorDoubleDistanceFunction.dimensionality(NumberVector<?> o1,
NumberVector<?> o2)
Get the common dimensionality of the two objects.
|
static int |
AbstractVectorDoubleDistanceFunction.dimensionality(NumberVector<?> o1,
NumberVector<?> o2)
Get the common dimensionality of the two objects.
|
static int |
AbstractVectorDoubleDistanceFunction.dimensionality(NumberVector<?> o1,
NumberVector<?> o2,
int expect)
Get the common dimensionality of the two objects.
|
static int |
AbstractVectorDoubleDistanceFunction.dimensionality(NumberVector<?> o1,
NumberVector<?> o2,
int expect)
Get the common dimensionality of the two objects.
|
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?> o1,
NumberVector<?> o2) |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
ClarkDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
ClarkDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
ArcCosineDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the cosine distance for two given feature vectors.
|
double |
ArcCosineDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the cosine distance for two given feature vectors.
|
double |
WeightedDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
WeightedDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
WeightedCanberraDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedCanberraDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
CosineDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the cosine distance for two given feature vectors.
|
double |
CosineDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the cosine distance for two given feature vectors.
|
double |
CanberraDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
CanberraDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LorentzianDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LorentzianDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
BrayCurtisDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
BrayCurtisDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
Kulczynski1DistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
Kulczynski1DistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LorentzianDistanceFunction.doubleNorm(NumberVector<?> v1) |
DoubleDistance |
AbstractVectorDoubleDistanceNorm.norm(NumberVector<?> obj) |
Modifier and Type | Method and Description |
---|---|
double |
HistogramIntersectionDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
HistogramIntersectionDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
Modifier and Type | Class and Description |
---|---|
static class |
ERiCDistanceFunction.Instance<V extends NumberVector<?>>
The actual instance bound to a particular database.
|
static class |
PCABasedCorrelationDistanceFunction.Instance<V extends NumberVector<?>>
The actual instance bound to a particular database.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
ERiCDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?>> |
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
BitDistance |
ERiCDistanceFunction.distance(NumberVector<?> v1,
NumberVector<?> v2,
PCAFilteredResult pca1,
PCAFilteredResult pca2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
BitDistance |
ERiCDistanceFunction.distance(NumberVector<?> v1,
NumberVector<?> v2,
PCAFilteredResult pca1,
PCAFilteredResult pca2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
double |
WeightedSquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the squared Pearson correlation distance for two given feature
vectors.
|
double |
WeightedSquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the squared Pearson correlation distance for two given feature
vectors.
|
double |
PearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
PearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
WeightedPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
WeightedPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
SquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the squared Pearson correlation distance for two given feature
vectors.
|
double |
SquaredPearsonCorrelationDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the squared Pearson correlation distance for two given feature
vectors.
|
Constructor and Description |
---|
ERiCDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory,
double delta,
double tau)
Constructor.
|
ERiCDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory,
double delta,
double tau)
Constructor.
|
PCABasedCorrelationDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory,
double delta)
Constructor
|
PCABasedCorrelationDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory,
double delta)
Constructor
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector<?>> |
LngLatDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
LatLngDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
DimensionSelectingLatLngDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
LngLatDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LngLatDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LatLngDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LatLngDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
DimensionSelectingLatLngDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
DimensionSelectingLatLngDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
Modifier and Type | Method and Description |
---|---|
double |
KolmogorovSmirnovDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
KolmogorovSmirnovDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
HistogramMatchDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
HistogramMatchDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector<?>> |
WeightedLPNormDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
LPNormDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
MinimumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
MinimumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
SquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
SquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
MaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
MaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedMaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedMaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedLPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedLPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
EuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
EuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
WeightedSquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the squared Euclidean distance between the given two vectors.
|
double |
WeightedSquaredEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the squared Euclidean distance between the given two vectors.
|
double |
LPIntegerNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LPIntegerNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
ManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
ManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
LPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
protected double |
SquaredEuclideanDistanceFunction.doubleMinDistObject(NumberVector<?> v,
SpatialComparable mbr) |
double |
MinimumDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
SquaredEuclideanDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
WeightedManhattanDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
MaximumDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
WeightedMaximumDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
WeightedLPNormDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
WeightedEuclideanDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
EuclideanDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
WeightedSquaredEuclideanDistanceFunction.doubleNorm(NumberVector<?> obj) |
double |
LPIntegerNormDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
ManhattanDistanceFunction.doubleNorm(NumberVector<?> v) |
double |
LPNormDistanceFunction.doubleNorm(NumberVector<?> v) |
private double |
WeightedManhattanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedManhattanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
MaximumDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
MaximumDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedMaximumDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedMaximumDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedLPNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedLPNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedEuclideanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
WeightedEuclideanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
EuclideanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
EuclideanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
LPIntegerNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
LPIntegerNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
ManhattanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
ManhattanDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg) |
private double |
LPNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg)
Compute unscaled distance in a range of dimensions.
|
private double |
LPNormDistanceFunction.doublePreDistance(NumberVector<?> v1,
NumberVector<?> v2,
int start,
int end,
double agg)
Compute unscaled distance in a range of dimensions.
|
private double |
WeightedManhattanDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
MaximumDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
WeightedMaximumDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
WeightedLPNormDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
WeightedEuclideanDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
EuclideanDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
LPIntegerNormDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
ManhattanDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg) |
private double |
LPNormDistanceFunction.doublePreDistanceVM(NumberVector<?> v,
SpatialComparable mbr,
int start,
int end,
double agg)
Compute unscaled distance in a range of dimensions.
|
private double |
WeightedManhattanDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
MaximumDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
WeightedMaximumDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
WeightedLPNormDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
WeightedEuclideanDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
EuclideanDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
LPIntegerNormDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
ManhattanDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg) |
private double |
LPNormDistanceFunction.doublePreNorm(NumberVector<?> v,
int start,
int end,
double agg)
Compute unscaled norm in a range of dimensions.
|
Modifier and Type | Method and Description |
---|---|
double |
ChiSquaredDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
ChiSquaredDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
JensenShannonDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
JensenShannonDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
JeffreyDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
JeffreyDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
KullbackLeiblerDivergenceAsymmetricDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
KullbackLeiblerDivergenceAsymmetricDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
SqrtJensenShannonDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
double |
SqrtJensenShannonDivergenceDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2) |
Modifier and Type | Class and Description |
---|---|
class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?>,P extends PreferenceVectorIndex<V>>
Abstract super class for all preference vector based correlation distance
functions.
|
static class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance<V extends NumberVector<?>,P extends PreferenceVectorIndex<V>>
Instance to compute the distances on an actual database.
|
static class |
DiSHDistanceFunction.Instance<V extends NumberVector<?>>
The actual instance bound to a particular database.
|
class |
HiSCDistanceFunction<V extends NumberVector<?>>
Distance function used in the HiSC algorithm.
|
static class |
HiSCDistanceFunction.Instance<V extends NumberVector<?>>
The actual instance bound to a particular database.
|
static class |
HiSCDistanceFunction.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
static class |
LocalSubspaceDistanceFunction.Instance<V extends NumberVector<?>>
The actual instance bound to a particular database.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
SubspaceLPNormDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?>> |
DiSHDistanceFunction.instantiate(Relation<T> database) |
<V extends NumberVector<?>> |
LocalSubspaceDistanceFunction.instantiate(Relation<V> database) |
Modifier and Type | Method and Description |
---|---|
VectorFieldTypeInformation<? super NumberVector<?>> |
SubspaceLPNormDistanceFunction.getInputTypeRestriction() |
VectorTypeInformation<? super NumberVector<?>> |
DimensionSelectingDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
SubspaceManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceManhattanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceLPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceLPNormDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceMaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceMaximumDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
DimensionSelectingDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
double |
DimensionSelectingDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
double |
SubspaceEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
double |
SubspaceEuclideanDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Euclidean distance between two given feature vectors in the
selected dimensions.
|
protected double |
SubspaceManhattanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?> v) |
protected double |
SubspaceLPNormDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?> v) |
protected double |
SubspaceMaximumDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?> v) |
protected double |
SubspaceEuclideanDistanceFunction.doubleMinDistObject(SpatialComparable mbr,
NumberVector<?> v) |
double |
SubspaceManhattanDistanceFunction.doubleNorm(NumberVector<?> obj) |
double |
SubspaceLPNormDistanceFunction.doubleNorm(NumberVector<?> obj) |
double |
SubspaceMaximumDistanceFunction.doubleNorm(NumberVector<?> obj) |
double |
DimensionSelectingDistanceFunction.doubleNorm(NumberVector<?> obj) |
double |
SubspaceEuclideanDistanceFunction.doubleNorm(NumberVector<?> obj) |
DoubleDistance |
SubspaceLPNormDistanceFunction.norm(NumberVector<?> obj) |
Constructor and Description |
---|
DiSHDistanceFunction(DiSHPreferenceVectorIndex.Factory<NumberVector<?>> indexFactory,
double epsilon)
Constructor.
|
LocalSubspaceDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory)
Constructor
|
LocalSubspaceDistanceFunction(IndexFactory<NumberVector<?>,FilteredLocalPCAIndex<NumberVector<?>>> indexFactory)
Constructor
|
Modifier and Type | Method and Description |
---|---|
VectorFieldTypeInformation<? super NumberVector<?>> |
AbstractEditDistanceFunction.getInputTypeRestriction() |
VectorFieldTypeInformation<? super NumberVector<?>> |
LCSSDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
EDRDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Edit Distance on Real Sequence distance between the given two
vectors.
|
double |
EDRDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Edit Distance on Real Sequence distance between the given two
vectors.
|
double |
DTWDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Dynamic Time Warping distance between the given two vectors.
|
double |
DTWDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Dynamic Time Warping distance between the given two vectors.
|
double |
LCSSDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Longest Common Subsequence distance between the given two
vectors.
|
double |
LCSSDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Longest Common Subsequence distance between the given two
vectors.
|
double |
ERPDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Edit Distance With Real Penalty distance between the given two
vectors.
|
double |
ERPDistanceFunction.doubleDistance(NumberVector<?> v1,
NumberVector<?> v2)
Provides the Edit Distance With Real Penalty distance between the given two
vectors.
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector<?>> |
AbstractVectorDoubleSimilarityFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
Kulczynski2SimilarityFunction.doubleSimilarity(NumberVector<?> v1,
NumberVector<?> v2) |
double |
Kulczynski2SimilarityFunction.doubleSimilarity(NumberVector<?> v1,
NumberVector<?> v2) |
double |
Kulczynski1SimilarityFunction.doubleSimilarity(NumberVector<?> v1,
NumberVector<?> v2) |
double |
Kulczynski1SimilarityFunction.doubleSimilarity(NumberVector<?> v1,
NumberVector<?> v2) |
static double |
JaccardPrimitiveSimilarityFunction.doubleSimilarityNumberVector(NumberVector<?> o1,
NumberVector<?> o2)
Compute Jaccard similarity for two number vectors.
|
static double |
JaccardPrimitiveSimilarityFunction.doubleSimilarityNumberVector(NumberVector<?> o1,
NumberVector<?> o2)
Compute Jaccard similarity for two number vectors.
|
DoubleDistance |
AbstractVectorDoubleSimilarityFunction.similarity(NumberVector<?> o1,
NumberVector<?> o2) |
DoubleDistance |
AbstractVectorDoubleSimilarityFunction.similarity(NumberVector<?> o1,
NumberVector<?> o2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?> fv1,
NumberVector<?> fv2) |
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?> fv1,
NumberVector<?> fv2) |
double |
LinearKernelFunction.doubleDistance(NumberVector<?> fv1,
NumberVector<?> fv2) |
double |
LinearKernelFunction.doubleDistance(NumberVector<?> fv1,
NumberVector<?> fv2) |
double |
PolynomialKernelFunction.doubleDistance(NumberVector<?> fv1,
NumberVector<?> fv2) |
double |
PolynomialKernelFunction.doubleDistance(NumberVector<?> fv1,
NumberVector<?> fv2) |
double |
SigmoidKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
SigmoidKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LinearKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LinearKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
RationalQuadraticKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
RationalQuadraticKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
PolynomialKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
PolynomialKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LaplaceKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
LaplaceKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
RadialBasisFunctionKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
double |
RadialBasisFunctionKernelFunction.doubleSimilarity(NumberVector<?> o1,
NumberVector<?> o2) |
Modifier and Type | Field and Description |
---|---|
private NumberVector<?> |
ROC.DecreasingVectorIter.vec
Data vector.
|
private NumberVector<?> |
ROC.IncreasingVectorIter.vec
Data vector.
|
(package private) NumberVector<?> |
ROC.VectorOverThreshold.vec
Vector to use as reference
|
(package private) NumberVector<?> |
ROC.VectorZero.vec
Vector to use as reference
|
Constructor and Description |
---|
ROC.DecreasingVectorIter(NumberVector<?> vec)
Constructor.
|
ROC.IncreasingVectorIter(NumberVector<?> vec)
Constructor.
|
ROC.VectorNonZero(NumberVector<?> vec)
Constructor.
|
ROC.VectorOverThreshold(NumberVector<?> vec,
double threshold)
Constructor.
|
ROC.VectorZero(NumberVector<?> vec)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector<?>>> |
AbstractHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector<?>> relation,
int l) |
Modifier and Type | Method and Description |
---|---|
ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector<?>>> |
AbstractHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector<?>> relation,
int l) |
Modifier and Type | Method and Description |
---|---|
int |
MultipleProjectionsLocalitySensitiveHashFunction.hashObject(NumberVector<?> vec) |
Modifier and Type | Interface and Description |
---|---|
interface |
LocalProjectionIndex<V extends NumberVector<?>,P extends ProjectionResult>
Abstract index interface for local projections
|
static interface |
LocalProjectionIndex.Factory<V extends NumberVector<?>,I extends LocalProjectionIndex<V,?>>
Factory
|
Modifier and Type | Class and Description |
---|---|
class |
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector<?>,D extends Distance<D>>
Class to materialize the kNN using a spatial join on an R-tree.
|
static class |
KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>>
The parameterizable factory.
|
static class |
KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>>
Parameterization class
|
class |
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
static class |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
The parameterizable factory.
|
static class |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
Parameterization class.
|
class |
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
Modifier and Type | Method and Description |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?>> relation) |
Modifier and Type | Method and Description |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?>> relation) |
Constructor and Description |
---|
SpatialApproximationMaterializeKNNPreprocessor.Factory(int k,
DistanceFunction<? super NumberVector<?>,D> distanceFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFilteredPCAIndex<NV extends NumberVector<?>>
Abstract base class for a local PCA based index.
|
static class |
AbstractFilteredPCAIndex.Factory<NV extends NumberVector<?>,I extends AbstractFilteredPCAIndex<NV>>
Factory class.
|
static class |
AbstractFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<?>,I extends AbstractFilteredPCAIndex<NV>>
Parameterization class.
|
interface |
FilteredLocalPCAIndex<NV extends NumberVector<?>>
Interface for an index providing local PCA results.
|
static interface |
FilteredLocalPCAIndex.Factory<NV extends NumberVector<?>,I extends FilteredLocalPCAIndex<NV>>
Factory interface
|
class |
KNNQueryFilteredPCAIndex<NV extends NumberVector<?>>
Provides the local neighborhood to be considered in the PCA as the k nearest
neighbors of an object.
|
static class |
KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<?>>
Factory class.
|
static class |
KNNQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<?>>
Parameterization class.
|
class |
RangeQueryFilteredPCAIndex<NV extends NumberVector<?>>
Provides the local neighborhood to be considered in the PCA as the neighbors
within an epsilon range query of an object.
|
static class |
RangeQueryFilteredPCAIndex.Factory<V extends NumberVector<?>>
Factory class.
|
static class |
RangeQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractPreferenceVectorIndex<NV extends NumberVector<?>>
Abstract base class for preference vector based algorithms.
|
static class |
AbstractPreferenceVectorIndex.Factory<V extends NumberVector<?>,I extends PreferenceVectorIndex<V>>
Factory class.
|
class |
DiSHPreferenceVectorIndex<V extends NumberVector<?>>
Preprocessor for DiSH preference vector assignment to objects of a certain
database.
|
static class |
DiSHPreferenceVectorIndex.Factory<V extends NumberVector<?>>
Factory class.
|
static class |
DiSHPreferenceVectorIndex.Factory.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
HiSCPreferenceVectorIndex<V extends NumberVector<?>>
Preprocessor for HiSC preference vector assignment to objects of a certain
database.
|
static class |
HiSCPreferenceVectorIndex.Factory<V extends NumberVector<?>>
Factory class.
|
static class |
HiSCPreferenceVectorIndex.Factory.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
interface |
PreferenceVectorIndex<NV extends NumberVector<?>>
Interface for an index providing preference vectors.
|
static interface |
PreferenceVectorIndex.Factory<V extends NumberVector<?>,I extends PreferenceVectorIndex<V>>
Factory interface
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSubspaceProjectionIndex<NV extends NumberVector<?>,D extends Distance<D>,P extends ProjectionResult>
Abstract base class for a local PCA based index.
|
static class |
AbstractSubspaceProjectionIndex.Factory<NV extends NumberVector<?>,D extends Distance<D>,I extends AbstractSubspaceProjectionIndex<NV,D,?>>
Factory class
|
static class |
AbstractSubspaceProjectionIndex.Factory.Parameterizer<NV extends NumberVector<?>,D extends Distance<D>,C>
Parameterization class.
|
class |
FourCSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>
Preprocessor for 4C local dimensionality and locally weighted matrix
assignment to objects of a certain database.
|
static class |
FourCSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>
Factory class for 4C preprocessors.
|
static class |
FourCSubspaceIndex.Factory.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
class |
PreDeConSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>
Preprocessor for PreDeCon local dimensionality and locally weighted matrix
assignment to objects of a certain database.
|
static class |
PreDeConSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>
Factory.
|
static class |
PreDeConSubspaceIndex.Factory.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class.
|
interface |
SubspaceProjectionIndex<NV extends NumberVector<?>,P extends ProjectionResult>
Interface for an index providing local subspaces.
|
static interface |
SubspaceProjectionIndex.Factory<NV extends NumberVector<?>,I extends SubspaceProjectionIndex<NV,?>>
Factory interface
|
Modifier and Type | Class and Description |
---|---|
class |
LatLngAsECEFIndex<O extends NumberVector<?>>
Index a 2d data set (consisting of Lat/Lng pairs) by using a projection to 3D
coordinates (WGS-86 to ECEF).
|
static class |
LatLngAsECEFIndex.Factory<O extends NumberVector<?>>
Index factory.
|
static class |
LatLngAsECEFIndex.Factory.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
LngLatAsECEFIndex<O extends NumberVector<?>>
Index a 2d data set (consisting of Lng/Lat pairs) by using a projection to 3D
coordinates (WGS-86 to ECEF).
|
static class |
LngLatAsECEFIndex.Factory<O extends NumberVector<?>>
Index factory.
|
static class |
LngLatAsECEFIndex.Factory.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
PINN<O extends NumberVector<?>>
Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the
nearest neighbors in high dimensional spaces by using a random projection
based index.
|
static class |
PINN.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
SpatialPointLeafEntry
Represents an entry in a leaf node of a spatial index.
|
Constructor and Description |
---|
SpatialPointLeafEntry(DBID id,
NumberVector<?> vector)
Constructor from number vector.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimalisticMemoryKDTree<O extends NumberVector<?>>
Simple implementation of a static in-memory K-D-tree.
|
static class |
MinimalisticMemoryKDTree.Factory<O extends NumberVector<?>>
Factory class
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractRStarTreeFactory<O extends NumberVector<?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,I extends AbstractRStarTree<N,E,S> & Index,S extends AbstractRTreeSettings>
Abstract factory for R*-Tree based trees.
|
static class |
AbstractRStarTreeFactory.Parameterizer<O extends NumberVector<?>,S extends AbstractRTreeSettings>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
DeLiCluTreeFactory<O extends NumberVector<?>>
Factory for DeLiClu R*-Trees.
|
static class |
DeLiCluTreeFactory.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
DeLiCluTreeIndex<O extends NumberVector<?>>
The common use of the DeLiClu tree: indexing number vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DeLiCluLeafEntry
Defines the requirements for a leaf entry in an DeLiClu-Tree node.
|
Constructor and Description |
---|
DeLiCluLeafEntry(DBID id,
NumberVector<?> vector)
Constructs a new LeafEntry object with the given parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
RStarTreeFactory<O extends NumberVector<?>>
Factory for regular R*-Trees.
|
static class |
RStarTreeFactory.Parameterizer<O extends NumberVector<?>>
Parameterization class.
|
class |
RStarTreeIndex<O extends NumberVector<?>>
The common use of the rstar tree: indexing number vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
PartialVAFile<V extends NumberVector<?>>
PartialVAFile.
|
static class |
PartialVAFile.Factory<V extends NumberVector<?>>
Index factory class.
|
class |
VAFile<V extends NumberVector<?>>
Vector-approximation file (VAFile)
Reference:
Weber, R. and Blott, S.
|
static class |
VAFile.Factory<V extends NumberVector<?>>
Index factory class.
|
Modifier and Type | Method and Description |
---|---|
protected static VectorApproximation |
PartialVAFile.calculatePartialApproximation(DBID id,
NumberVector<?> dv,
List<DoubleObjPair<DAFile>> daFiles)
Calculate partial vector approximation.
|
protected static void |
PartialVAFile.calculateSelectivityCoeffs(List<DoubleObjPair<DAFile>> daFiles,
NumberVector<?> query,
double epsilon)
Calculate selectivity coefficients.
|
private void |
VALPNormDistance.initializeLookupTable(double[][] splitPositions,
NumberVector<?> query,
double p)
Initialize the lookup table.
|
Modifier and Type | Method and Description |
---|---|
protected static BitSet |
PartialVAFile.fakeSubspace(Relation<? extends NumberVector<?>> relation)
Fake subspace (full-dimensional).
|
Constructor and Description |
---|
VALPNormDistance(double p,
double[][] splitPositions,
NumberVector<?> query,
VectorApproximation queryApprox)
Constructor.
|
Constructor and Description |
---|
DAFile(Relation<? extends NumberVector<?>> relation,
int dimension,
int partitions)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static double |
MathUtil.pearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.pearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y,
NumberVector<?> weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y,
NumberVector<?> weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
MathUtil.weightedPearsonCorrelationCoefficient(NumberVector<?> x,
NumberVector<?> y,
NumberVector<?> weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private ArrayList<ArrayList<DBIDs>> |
MCEDimensionSimilarity.buildPartitions(Relation<? extends NumberVector<?>> relation,
DBIDs ids,
int depth,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list.
|
private double |
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector<?>> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
void |
SlopeInversionDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SlopeDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
CovarianceDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HiCSDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HSMDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SURFINGDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
MCEDimensionSimilarity.computeDimensionSimilarites(Database database,
Relation<? extends NumberVector<?>> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
Modifier and Type | Class and Description |
---|---|
class |
Centroid
Class to compute the centroid of some data.
|
class |
ProjectedCentroid
Centroid only using a subset of dimensions.
|
class |
Vector
Provides a vector object that encapsulates an m x 1 - matrix object.
|
Modifier and Type | Method and Description |
---|---|
<F extends NumberVector<?>> |
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector.
|
<F extends NumberVector<?>> |
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector.
|
Modifier and Type | Method and Description |
---|---|
void |
Centroid.put(NumberVector<?> val)
Add a single value with weight 1.0.
|
void |
ProjectedCentroid.put(NumberVector<?> val)
Add a single value with weight 1.0.
|
void |
CovarianceMatrix.put(NumberVector<?> val)
Add a single value with weight 1.0.
|
void |
Centroid.put(NumberVector<?> val,
double weight)
Add data with a given weight.
|
void |
ProjectedCentroid.put(NumberVector<?> val,
double weight)
Add data with a given weight.
|
void |
CovarianceMatrix.put(NumberVector<?> val,
double weight)
Add data with a given weight.
|
Modifier and Type | Method and Description |
---|---|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?>> relation)
Static Constructor from a relation.
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static Constructor from a relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?>> relation)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?>> relation)
Static Constructor from a full relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Static Constructor from a full relation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCovarianceMatrixBuilder<V extends NumberVector<?>>
Abstract class with the task of computing a Covariance matrix to be used in PCA.
|
interface |
CovarianceMatrixBuilder<V extends NumberVector<?>>
Interface for computing covariance matrixes on a data set.
|
class |
PCAFilteredAutotuningRunner<V extends NumberVector<?>>
Performs a self-tuning local PCA based on the covariance matrices of given
objects.
|
static class |
PCAFilteredAutotuningRunner.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
PCAFilteredRunner<V extends NumberVector<?>>
PCA runner that will do dimensionality reduction.
|
static class |
PCAFilteredRunner.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
PCARunner<V extends NumberVector<?>>
Class to run PCA on given data.
|
static class |
PCARunner.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
RANSACCovarianceMatrixBuilder<V extends NumberVector<?>>
RANSAC based approach to a more robust covariance matrix computation.
|
static class |
RANSACCovarianceMatrixBuilder.Parameterizer<V extends NumberVector<?>>
Parameterization class
|
class |
StandardCovarianceMatrixBuilder<V extends NumberVector<?>>
Class for building a "traditional" covariance matrix.
|
class |
WeightedCovarianceMatrixBuilder<V extends NumberVector<?>>
CovarianceMatrixBuilder with weights. |
static class |
WeightedCovarianceMatrixBuilder.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
double[] |
AbstractRandomProjectionFamily.MatrixProjection.project(NumberVector<?> in) |
double[] |
RandomProjectionFamily.Projection.project(NumberVector<?> in)
Project a single vector.
|
double[] |
RandomSubsetProjectionFamily.SubsetProjection.project(NumberVector<?> in) |
Modifier and Type | Method and Description |
---|---|
static <O extends NumberVector<? extends Number>> |
Scales.calcScales(Relation<O> db)
Compute a linear scale for each dimension.
|
Modifier and Type | Method and Description |
---|---|
BigInteger |
ZCurveTransformer.asBigInteger(NumberVector<?> vector)
Deprecated.
|
byte[] |
ZCurveTransformer.asByteArray(NumberVector<?> vector)
Transform a single vector.
|
Constructor and Description |
---|
ZCurveTransformer(Relation<? extends NumberVector<?>> relation,
DBIDs ids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static ScalesResult |
ResultUtil.getScalesResult(Relation<? extends NumberVector<?>> rel)
Get (or create) a scales result for a relation.
|
Constructor and Description |
---|
ScalesResult(Relation<? extends NumberVector<?>> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <NV extends NumberVector<?>> |
DatabaseUtil.computeMinMax(Relation<NV> relation)
Determines the minimum and maximum values in each dimension of all objects
stored in the given database.
|
static <V extends NumberVector<?>> |
DatabaseUtil.exactMedian(Relation<V> relation,
DBIDs ids,
int dimension)
Returns the median of a data set in the given dimension.
|
static <V extends NumberVector<?>> |
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling
method.
|
static <V extends NumberVector<?>,T extends NumberVector<?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
static <V extends NumberVector<?>,T extends NumberVector<?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?>> database,
NumberVector<?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?>> database,
NumberVector<?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
Modifier and Type | Method and Description |
---|---|
N |
NumberVectorAdapter.get(NumberVector<N> array,
int off)
Deprecated.
|
byte |
NumberVectorAdapter.getByte(NumberVector<N> array,
int off) |
double |
NumberVectorAdapter.getDouble(NumberVector<N> array,
int off) |
float |
NumberVectorAdapter.getFloat(NumberVector<N> array,
int off) |
int |
NumberVectorAdapter.getInteger(NumberVector<N> array,
int off) |
long |
NumberVectorAdapter.getLong(NumberVector<N> array,
int off) |
short |
NumberVectorAdapter.getShort(NumberVector<N> array,
int off) |
static <N extends Number> |
ArrayLikeUtil.numberVectorAdapter(NumberVector<N> prototype)
Get the static instance.
|
int |
NumberVectorAdapter.size(NumberVector<N> array) |
static <N extends Number> |
ArrayLikeUtil.toPrimitiveDoubleArray(NumberVector<N> obj)
Convert a number vector to
double[] . |
static <N extends Number> |
ArrayLikeUtil.toPrimitiveFloatArray(NumberVector<N> obj)
Convert a number vector to
float[] . |
static <N extends Number> |
ArrayLikeUtil.toPrimitiveIntegerArray(NumberVector<N> obj)
Convert a number vector to
int[] . |
Modifier and Type | Class and Description |
---|---|
class |
AxisBasedReferencePoints<V extends NumberVector<?>>
Strategy to pick reference points by placing them on the axis ends.
|
static class |
AxisBasedReferencePoints.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
FullDatabaseReferencePoints<O extends NumberVector<?>>
Strategy to use the complete database as reference points.
|
class |
GridBasedReferencePoints<V extends NumberVector<?>>
Grid-based strategy to pick reference points.
|
static class |
GridBasedReferencePoints.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
RandomGeneratedReferencePoints<V extends NumberVector<?>>
Reference points generated randomly within the used data space.
|
static class |
RandomGeneratedReferencePoints.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
RandomSampleReferencePoints<V extends NumberVector<?>>
Random-Sampling strategy for picking reference points.
|
static class |
RandomSampleReferencePoints.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
class |
StarBasedReferencePoints<V extends NumberVector<?>>
Star-based strategy to pick reference points.
|
static class |
StarBasedReferencePoints.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
<NV extends NumberVector<?>> |
FullProjection.projectRelativeRenderToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a relative vector from rendering space to data space.
|
<NV extends NumberVector<?>> |
AbstractFullProjection.projectRelativeRenderToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a relative vector from rendering space to data space.
|
<NV extends NumberVector<?>> |
FullProjection.projectRelativeScaledToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a relative vector from scaled space to data space.
|
<NV extends NumberVector<?>> |
AbstractFullProjection.projectRelativeScaledToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a relative vector from scaled space to data space.
|
<NV extends NumberVector<?>> |
FullProjection.projectRenderToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a vector from rendering space to data space.
|
<NV extends NumberVector<?>> |
AbstractFullProjection.projectRenderToDataSpace(Vector v,
NumberVector.Factory<NV,?> prototype)
Project a vector from rendering space to data space.
|
<NV extends NumberVector<?>> |
FullProjection.projectScaledToDataSpace(Vector v,
NumberVector.Factory<NV,?> factory)
Project a vector from scaled space to data space.
|
<NV extends NumberVector<?>> |
AbstractFullProjection.projectScaledToDataSpace(Vector v,
NumberVector.Factory<NV,?> factory)
Project a vector from scaled space to data space.
|
Modifier and Type | Method and Description |
---|---|
double[] |
SimpleParallel.fastProjectDataToRenderSpace(NumberVector<?> data) |
double[] |
Simple2D.fastProjectDataToRenderSpace(NumberVector<?> data) |
double[] |
Projection2D.fastProjectDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
double[] |
AffineProjection.fastProjectDataToRenderSpace(NumberVector<?> data) |
double[] |
ProjectionParallel.fastProjectDataToRenderSpace(NumberVector<?> v)
Fast project a vector from data to render space
|
double |
Simple1D.fastProjectDataToRenderSpace(NumberVector<?> data) |
double |
Projection1D.fastProjectDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
double[] |
Simple2D.fastProjectDataToScaledSpace(NumberVector<?> data) |
double[] |
Projection2D.fastProjectDataToScaledSpace(NumberVector<?> data)
Project a data vector from data space to scaled space.
|
double[] |
AffineProjection.fastProjectDataToScaledSpace(NumberVector<?> data) |
double[] |
Simple2D.fastProjectRelativeDataToRenderSpace(NumberVector<?> data) |
double[] |
Projection2D.fastProjectRelativeDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
double[] |
AffineProjection.fastProjectRelativeDataToRenderSpace(NumberVector<?> data) |
double |
Simple1D.fastProjectRelativeDataToRenderSpace(NumberVector<?> data) |
double |
Projection1D.fastProjectRelativeDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
Vector |
FullProjection.projectDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectDataToRenderSpace(NumberVector<?> data)
Project a data vector from data space to rendering space.
|
Vector |
FullProjection.projectDataToScaledSpace(NumberVector<?> data)
Project a data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectDataToScaledSpace(NumberVector<?> data)
Project a data vector from data space to scaled space.
|
Vector |
FullProjection.projectRelativeDataToRenderSpace(NumberVector<?> data)
Project a relative data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectRelativeDataToRenderSpace(NumberVector<?> data)
Project a relative data vector from data space to rendering space.
|
Vector |
FullProjection.projectRelativeDataToScaledSpace(NumberVector<?> data)
Project a relative data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectRelativeDataToScaledSpace(NumberVector<?> data)
Project a relative data vector from data space to scaled space.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramProjector<V extends NumberVector<?>>
ScatterPlotProjector is responsible for producing a set of scatterplot
visualizations.
|
class |
ParallelPlotProjector<V extends NumberVector<?>>
ParallelPlotProjector is responsible for producing a parallel axes
visualization.
|
class |
ScatterPlotProjector<V extends NumberVector<?>>
ScatterPlotProjector is responsible for producing a set of scatterplot
visualizations.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<?>> |
SVGHyperCube.drawFilled(SVGPlot svgp,
String cls,
Projection2D proj,
V min,
V max)
Filled hypercube.
|
static <V extends NumberVector<?>> |
SVGHyperCube.drawFrame(SVGPlot svgp,
Projection2D proj,
V min,
V max)
Wireframe hypercube.
|
Modifier and Type | Method and Description |
---|---|
static <D extends NumberDistance<?,?>> |
SVGHyperSphere.drawCross(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
D rad)
Wireframe "cross" hypersphere
|
static Element |
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
double radius)
Wireframe "euclidean" hypersphere
|
static Element |
SVGHyperSphere.drawLp(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
double radius,
double p)
Wireframe "Lp" hypersphere
|
static Element |
SVGHyperSphere.drawManhattan(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
double radius)
Wireframe "manhattan" hypersphere
|
Modifier and Type | Class and Description |
---|---|
class |
ColoredHistogramVisualizer.Instance<NV extends NumberVector<?>>
Instance
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractParallelVisualization<NV extends NumberVector<?>>
Abstract base class for parallel visualizations.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.Instance.clustering
The result we visualize.
|
Modifier and Type | Method and Description |
---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends NumberVector<?>> |
AbstractScatterplotVisualization.rel
The representation we visualize
|
protected ReferencePointsResult<? extends NumberVector<?>> |
ReferencePointsVisualization.Instance.result
Serves reference points.
|
Modifier and Type | Class and Description |
---|---|
class |
EMClusterVisualization.Instance<NV extends NumberVector<?>>
Instance.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<?>> |
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Field and Description |
---|---|
private AbstractMaterializeKNNPreprocessor<? extends NumberVector<?>,D,?> |
DistanceFunctionVisualization.Instance.result
The selection result we work on
|
Modifier and Type | Method and Description |
---|---|
static Element |
DistanceFunctionVisualization.drawCosine(SVGPlot svgp,
Projection2D proj,
NumberVector<?> mid,
double angle)
Visualizes Cosine and ArcCosine distance functions
|
Modifier and Type | Class and Description |
---|---|
class |
SameSizeKMeansAlgorithm<V extends NumberVector<?>>
K-means variation that produces equally sized clusters.
|
static class |
SameSizeKMeansAlgorithm.Parameterizer<V extends NumberVector<?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected PrimitiveDoubleDistanceFunction<? super NumberVector<?>> |
SameSizeKMeansAlgorithm.Parameterizer.distanceFunction
Distance function
|
Modifier and Type | Method and Description |
---|---|
protected List<? extends NumberVector<?>> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
Modifier and Type | Method and Description |
---|---|
protected WritableDataStore<SameSizeKMeansAlgorithm.Meta> |
SameSizeKMeansAlgorithm.initializeMeta(Relation<V> relation,
List<? extends NumberVector<?>> means)
Initialize the metadata storage.
|
protected List<? extends NumberVector<?>> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<? extends NumberVector<?>> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
PrimitiveDoubleDistanceFunction<NumberVector<?>> df)
Compute the distances of each object to all means.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<? extends NumberVector<?>> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
PrimitiveDoubleDistanceFunction<NumberVector<?>> df)
Compute the distances of each object to all means.
|
Constructor and Description |
---|
SameSizeKMeansAlgorithm(PrimitiveDoubleDistanceFunction<? super NumberVector<?>> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector<?>> |
TutorialDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector<?>> |
MultiLPNorm.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
TutorialDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
TutorialDistanceFunction.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
MultiLPNorm.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |
double |
MultiLPNorm.doubleDistance(NumberVector<?> o1,
NumberVector<?> o2) |