Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
tutorial.outlier |
Modifier and Type | Class and Description |
---|---|
class |
KNNDistanceOrder<O,D extends Distance<D>>
Provides an order of the kNN-distances for all objects within the database.
|
class |
KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors.
|
class |
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNBenchmarkAlgorithm<O,D extends Distance<D>>
Benchmarking algorithm that computes the k nearest neighbors for each query
point.
|
class |
RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Benchmarking algorithm that computes a range query for each point.
|
Modifier and Type | Class and Description |
---|---|
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
sets in a database.
|
class |
DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
density-connected sets in a database.
|
class |
NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Mean-shift based clustering algorithm.
|
class |
OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm.
|
class |
SLINK<O,D extends Distance<D>>
Implementation of the efficient Single-Link Algorithm SLINK of R.
|
Modifier and Type | Class and Description |
---|---|
class |
HiCO<V extends NumberVector<?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
of correlation clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
KMedoidsEM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
"Partitioning Around Medoids" approach.
|
class |
KMedoidsPAM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using the
"Partitioning Around Medoids" approach.
|
Modifier and Type | Class and Description |
---|---|
class |
HiSC<V extends NumberVector<?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
of subspace clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
ABOD<V extends NumberVector<?>>
Angle-Based Outlier Detection
Outlier detection using variance analysis on angles, especially for high
dimensional data sets.
|
class |
AbstractDBOutlier<O,D extends Distance<D>>
Simple distance based outlier detection algorithms.
|
class |
COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. |
class |
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm.
|
class |
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d.
|
class |
HilOut<O extends NumberVector<?>>
Fast Outlier Detection in High Dimensional Spaces
Outlier Detection using Hilbert space filling curves
Reference:
F.
|
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
class |
LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Outlier Detection with Kernel Density Functions.
|
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral".
|
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
class |
SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Algorithm to compute local correlation outlier probability.
|
class |
SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
A simple variant of the LOF algorithm, which uses a simple kernel density
estimation instead of the local reachability density.
|
class |
SimpleLOF<O,D extends NumberDistance<D,?>>
A simplified version of the original LOF algorithm, which does not use the
reachability distance, yielding less stable results on inliers.
|
Modifier and Type | Class and Description |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks.
|
Modifier and Type | Class and Description |
---|---|
class |
AveragePrecisionAtK<V,D extends NumberDistance<D,?>>
Evaluate a distance functions performance by computing the average precision
at k, when ranking the objects by distance.
|
class |
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
set.
|
class |
EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
class |
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceStddevOutlier<O,D extends NumberDistance<D,?>>
A simple outlier detection algorithm that computes the standard deviation of
the kNN distances.
|