Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN
Generalized DBSCAN is an abstraction of the original DBSCAN idea,
that allows the use of arbitrary "neighborhood" and "core point" predicates.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel |
Parallel versions of Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch |
BIRCH clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in
evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types
The general use-case for any parser is to create objects out of an
InputStream (e.g. by reading a data file). |
de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster |
Similarity measures for comparing clusters.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.result.textwriter.naming |
Naming schemes for clusters (for output when an algorithm doesn't generate
cluster names).
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations
|
de.lmu.ifi.dbs.elki.visualization.visualizers.actions |
Action-only "visualizers" that only produce menu entries.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector>
|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<PrototypeModel<O>> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Clustering<PrototypeModel<O>> |
Leader.run(Relation<O> relation)
Run the leader clustering algorithm.
|
Clustering<Model> |
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Clustering<Model> |
GriDBSCAN.run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.
|
Clustering<Model> |
GriDBSCAN.Instance.run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Clustering<M> |
AbstractBiclustering.biclustering()
Run the actual biclustering algorithm.
|
Clustering<BiclusterWithInversionsModel> |
ChengAndChurch.biclustering() |
Clustering<M> |
AbstractBiclustering.run(Relation<V> relation)
Prepares the algorithm for running on a specific database.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<DimensionModel> |
COPAC.run(Database database,
Relation<V> relation)
Run the COPAC algorithm.
|
Clustering<CorrelationModel> |
ERiC.run(Database database,
Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
CASH.run(Relation<V> rel)
Run CASH on the relation.
|
Modifier and Type | Method and Description |
---|---|
private void |
ERiC.buildHierarchy(Clustering<CorrelationModel> clustering,
java.util.List<java.util.List<Cluster<CorrelationModel>>> clusterMap,
ERiCNeighborPredicate.Instance npred) |
private java.util.List<java.util.List<Cluster<CorrelationModel>>> |
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
Relation<V> relation,
int dimensionality,
ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
Clustering<M> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
GeneralizedDBSCAN.Instance.run()
Run the actual GDBSCAN algorithm.
|
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Clustering<Model> |
LSDBC.run(Database database,
Relation<O> relation)
Run the LSDBC algorithm
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ParallelGeneralizedDBSCAN.Instance.run()
Run the parallel GDBSCAN algorithm.
|
Clustering<Model> |
ParallelGeneralizedDBSCAN.run(Database database) |
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel> |
BIRCHLeafClustering.run(Relation<NumberVector> relation)
Run the clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<DendrogramModel> |
AbstractCutDendrogram.Instance.buildFlat(DBIDArrayIter it,
int split,
FiniteProgress progress)
Build a flat clustering.
|
private Clustering<DendrogramModel> |
AbstractCutDendrogram.Instance.buildHierarchical(DBIDArrayIter it,
int split,
FiniteProgress progress)
Build a hierarchical clustering.
|
Clustering<DendrogramModel> |
AbstractCutDendrogram.Instance.extractClusters()
Extract all clusters from the pi-lambda-representation.
|
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.Instance.run()
Extract all clusters from the pi-lambda-representation.
|
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.Instance.run()
Extract all clusters from the pi-lambda-representation.
|
Clustering<Model> |
ClustersWithNoiseExtraction.Instance.run()
Extract all clusters from the pi-lambda-representation.
|
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.run(Database database) |
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.run(Database database) |
Clustering<Model> |
ClustersWithNoiseExtraction.run(Database database) |
Clustering<DendrogramModel> |
AbstractCutDendrogram.run(Database database) |
Clustering<DendrogramModel> |
CutDendrogramByNumberOfClusters.run(PointerHierarchyRepresentationResult pointerresult) |
Clustering<DendrogramModel> |
CutDendrogramByHeight.run(PointerHierarchyRepresentationResult pointerresult) |
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.run(PointerHierarchyRepresentationResult pointerresult)
Process an existing result.
|
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.run(PointerHierarchyRepresentationResult pointerresult)
Process an existing result.
|
Clustering<Model> |
ClustersWithNoiseExtraction.run(PointerHierarchyRepresentationResult pointerresult)
Process an existing result.
|
abstract Clustering<DendrogramModel> |
AbstractCutDendrogram.run(PointerHierarchyRepresentationResult pointerresult)
Process a pointer hierarchy result.
|
Modifier and Type | Method and Description |
---|---|
private void |
HDBSCANHierarchyExtraction.Instance.collectChildren(HDBSCANHierarchyExtraction.TempCluster temp,
Clustering<DendrogramModel> clustering,
HDBSCANHierarchyExtraction.TempCluster cur,
Cluster<DendrogramModel> clus,
boolean flatten)
Recursive flattening of clusters.
|
private void |
HDBSCANHierarchyExtraction.Instance.finalizeCluster(HDBSCANHierarchyExtraction.TempCluster temp,
Clustering<DendrogramModel> clustering,
Cluster<DendrogramModel> parent,
boolean flatten)
Make the cluster for the given object
|
protected Cluster<DendrogramModel> |
SimplifiedHierarchyExtraction.Instance.toCluster(SimplifiedHierarchyExtraction.TempCluster temp,
Clustering<DendrogramModel> clustering,
DBIDRef lead)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
protected Clustering<MeanModel> |
KMediansLloyd.Instance.buildMediansResult() |
protected Clustering<KMeansModel> |
AbstractKMeans.Instance.buildResult()
Build a standard k-means result, with known cluster variance sums.
|
protected Clustering<KMeansModel> |
AbstractKMeans.Instance.buildResult(boolean varstat,
Relation<? extends NumberVector> relation)
Build the result, recomputing the cluster variance if
varstat is
set to true. |
protected Clustering<KMeansModel> |
KMeansMinusMinus.Instance.buildResultWithNoise() |
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<MedoidModel> |
FastCLARA.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
SingleAssignmentKMeans.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansSort.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansAnnulus.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansExponion.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<MeanModel> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansElkan.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansHamerly.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMinusMinus.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<MedoidModel> |
KMedoidsPark.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<KMeansModel> |
KMeansSimplifiedElkan.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
CLARA.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansCompare.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
CLARANS.run(Database database,
Relation<V> relation) |
Clustering<M> |
XMeans.run(Database database,
Relation<V> relation)
Run the algorithm on a database and relation.
|
Clustering<MedoidModel> |
FastCLARANS.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel> |
ParallelLloydKMeans.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
BayesianInformationCriterionZhao.logLikelihoodZhao(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static int |
AbstractKMeansQualityMeasure.numberOfFreeParameters(Relation<? extends NumberVector> relation,
Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.
|
static int |
AbstractKMeansQualityMeasure.numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be
less than the complete data set for X-means!)
|
<V extends NumberVector> |
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends O> |
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
Modifier and Type | Method and Description |
---|---|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
Clustering<ClusterModel> |
KNNKernelDensityMinimaClustering.run(Relation<V> relation)
Run the clustering algorithm on a data relation.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrder clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result.
|
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
Modifier and Type | Method and Description |
---|---|
private Clustering<SubspaceModel> |
DiSH.computeClusters(Relation<V> database,
DiSH.DiSHClusterOrder clusterOrder)
Computes the hierarchical clusters according to the cluster order.
|
Clustering<SubspaceModel> |
DiSH.run(Database db,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<SubspaceModel> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
Clustering<SubspaceModel> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
Clustering<SubspaceModel> |
CLIQUE.run(Relation<? extends NumberVector> relation)
Performs the CLIQUE algorithm on the given database.
|
Clustering<SubspaceModel> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
private void |
DiSH.buildHierarchy(Relation<V> database,
Clustering<SubspaceModel> clustering,
java.util.List<Cluster<SubspaceModel>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
CenterOfMassMetaClustering<C extends Clustering<?>>
Center-of-mass meta clustering reduces uncertain objects to their center of
mass, then runs a vector-oriented clustering algorithm on this data set.
|
static class |
CenterOfMassMetaClustering.Parameterizer<C extends Clustering<?>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
Clustering<?> |
RepresentativeUncertainClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
Clustering<?> |
UKMeans.run(Database database,
Relation<DiscreteUncertainObject> relation)
Run the clustering.
|
protected Clustering<?> |
RepresentativeUncertainClustering.runClusteringAlgorithm(ResultHierarchy hierarchy,
Result parent,
DBIDs ids,
DataStore<DoubleVector> store,
int dim,
java.lang.String title)
Run a clustering algorithm on a single instance.
|
Modifier and Type | Field and Description |
---|---|
protected ClusteringAlgorithm<Clustering<MeanModel>> |
CBLOF.clusteringAlgorithm
The clustering algorithm to use.
|
protected ClusteringAlgorithm<Clustering<MeanModel>> |
CBLOF.Parameterizer.clusteringAlgorithm
The clustering algorithm to use.
|
Constructor and Description |
---|
CBLOF(NumberVectorDistanceFunction<? super O> distanceFunction,
ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm,
double alpha,
double beta)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Clustering<?>> |
Clustering.TYPE
Type information, for relation matching.
|
Modifier and Type | Method and Description |
---|---|
static java.util.List<Clustering<? extends Model>> |
Clustering.getClusteringResults(Result r)
Collect all clustering results from a Result
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<Model> |
ClusteringVectorParser.curclu
Current clustering.
|
Modifier and Type | Method and Description |
---|---|
<T extends Clustering<?>> |
ClusteringRandIndexSimilarityFunction.instantiate(Relation<T> relation) |
<T extends Clustering<?>> |
ClusteringFowlkesMallowsSimilarityFunction.instantiate(Relation<T> relation) |
<T extends Clustering<?>> |
ClusteringDistanceSimilarityFunction.instantiate(Relation<T> relation) |
<T extends Clustering<?>> |
ClusteringBCubedF1SimilarityFunction.instantiate(Relation<T> relation) |
<T extends Clustering<?>> |
ClusteringAdjustedRandIndexSimilarityFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super Clustering<?>> |
ClusteringRandIndexSimilarityFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super Clustering<?>> |
ClusteringFowlkesMallowsSimilarityFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super Clustering<?>> |
ClusteringBCubedF1SimilarityFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super Clustering<?>> |
ClusteringAdjustedRandIndexSimilarityFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
ClusteringRandIndexSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringRandIndexSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringFowlkesMallowsSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringFowlkesMallowsSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringBCubedF1SimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringBCubedF1SimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringAdjustedRandIndexSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringAdjustedRandIndexSimilarityFunction.distance(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringRandIndexSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringRandIndexSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringFowlkesMallowsSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringFowlkesMallowsSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringBCubedF1SimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringBCubedF1SimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringAdjustedRandIndexSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
double |
ClusteringAdjustedRandIndexSimilarityFunction.similarity(Clustering<?> o1,
Clustering<?> o2) |
Modifier and Type | Method and Description |
---|---|
protected void |
EvaluateClustering.evaluteResult(Database db,
Clustering<?> c,
Clustering<?> refc)
Evaluate a clustering result.
|
protected void |
EvaluateClustering.evaluteResult(Database db,
Clustering<?> c,
Clustering<?> refc)
Evaluate a clustering result.
|
private boolean |
EvaluateClustering.isReferenceResult(Clustering<?> t)
Test if a clustering result is a valid reference result.
|
static <C extends Model> |
LogClusterSizes.logClusterSizes(Clustering<C> c)
Log the cluster sizes of a clustering.
|
void |
ClusterContingencyTable.process(Clustering<?> result1,
Clustering<?> result2)
Process two clustering results.
|
void |
ClusterContingencyTable.process(Clustering<?> result1,
Clustering<?> result2)
Process two clustering results.
|
Modifier and Type | Method and Description |
---|---|
double |
EvaluateSquaredErrors.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateConcordantPairs.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluatePBMIndex.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDaviesBouldin.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateCIndex.evaluateClustering(Database db,
Relation<? extends O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDBCV.evaluateClustering(Database db,
Relation<O> rel,
Clustering<?> cl)
Evaluate a single clustering.
|
double |
EvaluateSilhouette.evaluateClustering(Database db,
Relation<O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
Modifier and Type | Field and Description |
---|---|
private java.util.List<Clustering<?>> |
Segments.clusterings
Clusterings
|
Constructor and Description |
---|
Segments(java.util.List<Clustering<?>> clusterings)
Initialize segments.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
OutlierThresholdClustering.split(OutlierResult or) |
Modifier and Type | Method and Description |
---|---|
protected void |
ClusteringVectorDumper.dumpClusteringOutput(java.io.PrintStream writer,
ResultHierarchy hierarchy,
Clustering<?> c)
Dump a single clustering result.
|
private void |
KMLOutputHandler.writeClusteringResult(javax.xml.stream.XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
java.util.List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Field and Description |
---|---|
private Clustering<?> |
SimpleEnumeratingScheme.clustering
Clustering this scheme is applied to.
|
Constructor and Description |
---|
SimpleEnumeratingScheme(Clustering<?> clustering)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering.
|
Modifier and Type | Method and Description |
---|---|
static <E extends ClusterOrder> |
OPTICSCut.makeOPTICSCut(E co,
double epsilon)
Compute an OPTICS cut clustering
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<?> |
ClusterStylingPolicy.clustering
Clustering in use.
|
Modifier and Type | Method and Description |
---|---|
Clustering<?> |
ClusterStylingPolicy.getClustering()
Get the clustering used by this styling policy
|
Constructor and Description |
---|
ClusterStylingPolicy(Clustering<?> clustering,
StyleLibrary style)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<?> |
ClusterStyleAction.SetStyleAction.c
Clustering to use
|
Constructor and Description |
---|
SetStyleAction(Clustering<?> c,
VisualizerContext context)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<OPTICSModel> |
OPTICSClusterVisualization.Instance.clus
Our clustering
|
Modifier and Type | Method and Description |
---|---|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
It<Cluster<OPTICSModel>> clusters,
int depth,
java.util.Map<Cluster<?>,java.lang.String> colormap)
Recursively draw clusters
|
Modifier and Type | Method and Description |
---|---|
protected static <M extends Model> |
KeyVisualization.findDepth(Clustering<M> c)
Compute the size of the clustering.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|
Copyright © 2019 ELKI Development Team. License information.