O - the type of Object the algorithm is applied to@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, Xiaowei Xu",title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise",booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96)",url="http://www.aaai.org/Library/KDD/1996/kdd96-037.php",bibkey="DBLP:conf/kdd/EsterKSX96") @Reference(authors="Erich Schubert, J\u00f6rg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu",title="DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN",booktitle="ACM Trans. Database Systems (TODS)",url="https://doi.org/10.1145/3068335",bibkey="DBLP:journals/tods/SchubertSEKX17") @Priority(value=200) public class DBSCAN<O> extends AbstractDistanceBasedAlgorithm<O,Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
Reference:
Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96)
Further discussion:
Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu
DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN
ACM Trans. Database Systems (TODS)
| Modifier and Type | Class and Description |
|---|---|
static class |
DBSCAN.Parameterizer<O>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
protected double |
epsilon
Holds the epsilon radius threshold.
|
private static Logging |
LOG
The logger for this class.
|
protected int |
minpts
Holds the minimum cluster size.
|
protected long |
ncounter
Number of neighbors.
|
protected ModifiableDBIDs |
noise
Holds a set of noise.
|
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids.
|
protected java.util.List<ModifiableDBIDs> |
resultList
Holds a list of clusters found.
|
ALGORITHM_IDDISTANCE_FUNCTION_ID| Constructor and Description |
|---|
DBSCAN(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor with parameters.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
expandCluster(Relation<O> relation,
RangeQuery<O> rangeQuery,
DBIDRef startObjectID,
ArrayModifiableDBIDs seeds,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
private void |
processNeighbors(DoubleDBIDListIter neighbor,
ModifiableDBIDs currentCluster,
ArrayModifiableDBIDs seeds)
Process a single core point.
|
Clustering<Model> |
run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
protected void |
runDBSCAN(Relation<O> relation,
RangeQuery<O> rangeQuery)
Run the DBSCAN algorithm
|
getDistanceFunctionrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
protected double epsilon
protected int minpts
protected java.util.List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
protected long ncounter
public DBSCAN(DistanceFunction<? super O> distanceFunction, double epsilon, int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts parameterpublic Clustering<Model> run(Relation<O> relation)
protected void runDBSCAN(Relation<O> relation, RangeQuery<O> rangeQuery)
relation - Data relationrangeQuery - Range query classprotected void expandCluster(Relation<O> relation, RangeQuery<O> rangeQuery, DBIDRef startObjectID, ArrayModifiableDBIDs seeds, FiniteProgress objprog, IndefiniteProgress clusprog)
relation - Database relation to run onrangeQuery - Range query to usestartObjectID - potential seed of a new potential clusterseeds - Array to store the current seedsobjprog - Number of objects processed (may be null)clusprog - Number of clusters found (may be null)private void processNeighbors(DoubleDBIDListIter neighbor, ModifiableDBIDs currentCluster, ArrayModifiableDBIDs seeds)
neighbor - Iterator over neighborscurrentCluster - Current clusterseeds - Seed setpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<Model>>Copyright © 2019 ELKI Development Team. License information.