Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache builders.
|
de.lmu.ifi.dbs.elki.database.datastore |
General data store layer API (along the lines of
Map<DBID, T> - use everywhere!) |
de.lmu.ifi.dbs.elki.database.datastore.memory |
Memory data store implementation for ELKI.
|
de.lmu.ifi.dbs.elki.database.ids.distance |
Distance-DBID pairs, lists and heaps.
|
de.lmu.ifi.dbs.elki.database.ids.generic |
Database object identification and ID group handling - generic implementations.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space L_p norms such as the popular Euclidean and Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.strings |
Distance functions for strings.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancevalue |
Distance values, i.e. object storing an actual distance value along with
comparison functions and value parsers.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Field and Description |
---|---|
protected DoubleDistance |
AbstractProjectedDBSCAN.epsilon
Holds the value of
AbstractProjectedDBSCAN.EPSILON_ID . |
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.distanceFunction
The euclidean distance function.
|
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function.
|
protected DistanceQuery<V,DoubleDistance> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function.
|
Modifier and Type | Method and Description |
---|---|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractProjectedDBSCAN.expandCluster(LocallyWeightedDistanceFunction.Instance<V> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN.
|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
Constructor and Description |
---|
AbstractProjectedDBSCAN(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its
closest seed.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new
|
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters.
|
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> relation,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters.
|
Constructor and Description |
---|
FourC(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
NaiveAgglomerativeHierarchicalClustering.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult<DoubleDistance> |
NaiveAgglomerativeHierarchicalClustering.run(Database db,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Field and Description |
---|---|
private DoubleDistance |
SUBCLU.epsilon
Holds the value of
SUBCLU.EPSILON_ID . |
protected DoubleDistance |
SUBCLU.Parameterizer.epsilon |
Modifier and Type | Field and Description |
---|---|
protected DimensionSelectingSubspaceDistanceFunction<V,DoubleDistance> |
SUBCLU.Parameterizer.distance |
private DimensionSelectingSubspaceDistanceFunction<V,DoubleDistance> |
SUBCLU.distanceFunction
Holds the instance of the distance function specified by
SUBCLU.DISTANCE_FUNCTION_ID . |
Modifier and Type | Method and Description |
---|---|
private DoubleDistance |
PROCLUS.manhattanSegmentalDistance(V o1,
V o2,
gnu.trove.set.TIntSet dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the
specified dimensions.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,DistanceDBIDList<DoubleDistance>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,gnu.trove.set.TIntSet> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private Map<DBID,gnu.trove.set.TIntSet> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private Map<DBID,DistanceDBIDList<DoubleDistance>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private Map<DBID,DistanceDBIDList<DoubleDistance>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private ModifiableDBIDs |
PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
Constructor and Description |
---|
PreDeCon(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
SUBCLU(DimensionSelectingSubspaceDistanceFunction<V,DoubleDistance> distanceFunction,
DoubleDistance epsilon,
int minpts)
Constructor.
|
Constructor and Description |
---|
SUBCLU(DimensionSelectingSubspaceDistanceFunction<V,DoubleDistance> distanceFunction,
DoubleDistance epsilon,
int minpts)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<O,DoubleDistance> |
HilOut.distq
Distance query
|
protected SimilarityFunction<? super V,DoubleDistance> |
ABOD.kernelFunction
Store the configured Kernel version.
|
protected SimilarityFunction<V,DoubleDistance> |
ABOD.Parameterizer.kernelFunction
Distance function.
|
Constructor and Description |
---|
ABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction)
Constructor for Angle-Based Outlier Detection (ABOD).
|
FastABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction,
int k)
Constructor for Angle-Based Outlier Detection (ABOD).
|
LBABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction,
int k,
int l)
Actual constructor, with parameters.
|
Modifier and Type | Method and Description |
---|---|
private DoubleDistanceDBIDList |
OUTRES.refineRange(DistanceDBIDList<DoubleDistance> neighc,
double adjustedEps)
Refine a range query.
|
private DoubleDistanceDBIDList |
OUTRES.subsetNeighborhoodQuery(DistanceDBIDList<DoubleDistance> neighc,
DBIDRef dbid,
PrimitiveDoubleDistanceFunction<? super V> df,
double adjustedEps,
OUTRES.KernelDensityEstimator kernel)
Refine neighbors within a subset.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<O,DoubleDistance> |
CacheDoubleDistanceRangeQueries.distance
Distance function that is to be cached.
|
private DistanceFunction<O,DoubleDistance> |
CacheDoubleDistanceRangeQueries.Parameterizer.distance
Distance function that is to be cached.
|
Constructor and Description |
---|
CacheDoubleDistanceRangeQueries(InputStep input,
DistanceFunction<O,DoubleDistance> distance,
double radius,
File out)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceDataStore.get(DBIDRef id)
Deprecated.
Use
DoubleDistanceDataStore.doubleValue(de.lmu.ifi.dbs.elki.database.ids.DBIDRef) instead, to avoid boxing/unboxing cost. |
DoubleDistance |
WritableDoubleDistanceDataStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
Use
WritableDoubleDistanceDataStore.putDouble(de.lmu.ifi.dbs.elki.database.ids.DBIDRef, double) instead, to avoid boxing/unboxing cost. |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
WritableDoubleDistanceDataStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
Use
WritableDoubleDistanceDataStore.putDouble(de.lmu.ifi.dbs.elki.database.ids.DBIDRef, double) instead, to avoid boxing/unboxing cost. |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
ArrayDoubleDistanceStore.get(DBIDRef id)
Deprecated.
|
DoubleDistance |
MapIntegerDBIDDoubleDistanceStore.get(DBIDRef id)
Deprecated.
|
DoubleDistance |
ArrayDoubleDistanceStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
|
DoubleDistance |
MapIntegerDBIDDoubleDistanceStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
ArrayDoubleDistanceStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
|
DoubleDistance |
MapIntegerDBIDDoubleDistanceStore.put(DBIDRef id,
DoubleDistance value)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceDBIDListIter.getDistance()
Deprecated.
Use
DoubleDistanceDBIDListIter.doubleDistance() to avoid creating unnecessary
objects. |
DoubleDistance |
DoubleDistanceDBIDPairList.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceDBIDPair.getDistance()
Deprecated.
Would produce a DoubleDistance object. Use
DoubleDistanceDBIDPair.doubleDistance() instead! |
DoubleDistance |
DoubleDistanceKNNList.getKNNDistance()
Deprecated.
use doubleKNNDistance()!
|
DoubleDistance |
DoubleDistanceKNNHeap.getKNNDistance()
Deprecated.
if you know your distances are double-valued, you should be
using the primitive type.
|
Modifier and Type | Method and Description |
---|---|
void |
ModifiableDoubleDistanceDBIDList.add(DoubleDistance dist,
DBIDRef id)
Deprecated.
Pass a double value instead.
|
void |
DoubleDistanceDBIDPairList.add(DoubleDistance dist,
DBIDRef id)
Deprecated.
Pass a double value instead.
|
void |
DoubleDistanceKNNHeap.insert(DoubleDistance dist,
DBIDRef id)
Deprecated.
if you know your distances are double-valued, you should be
using the primitive type.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceDBIDPairKNNListHeap.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceDBIDPairKNNList.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceKNNSubList.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceDBIDPairKNNListHeap.getKNNDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceDBIDPairKNNList.getKNNDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceDBIDPairKNNHeap.getKNNDistance()
Deprecated.
if you know your distances are double-valued, you should be
using the primitive type.
|
DoubleDistance |
DoubleDistanceKNNSubList.getKNNDistance()
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
void |
DoubleDistanceDBIDPairKNNListHeap.insert(DoubleDistance dist,
DBIDRef id)
Deprecated.
|
void |
DoubleDistanceDBIDPairKNNHeap.insert(DoubleDistance dist,
DBIDRef id)
Deprecated.
if you know your distances are double-valued, you should be
using the primitive type.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceIntegerDBIDList.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceIntegerDBIDPairList.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceIntegerDBIDPairKNNListHeap.Itr.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceIntegerDBIDPair.getDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceIntegerDBIDKNNList.getKNNDistance()
Deprecated.
Since you know this is a double distance heap, use
DoubleDistanceIntegerDBIDKNNList.doubleKNNDistance() |
DoubleDistance |
DoubleDistanceIntegerDBIDKNNHeap.getKNNDistance()
Deprecated.
|
DoubleDistance |
DoubleDistanceIntegerDBIDPairKNNListHeap.getKNNDistance()
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
void |
DoubleDistanceIntegerDBIDList.add(DoubleDistance dist,
DBIDRef id)
Deprecated.
|
void |
DoubleDistanceIntegerDBIDPairList.add(DoubleDistance dist,
DBIDRef id)
Deprecated.
|
void |
DoubleDistanceIntegerDBIDKNNHeap.insert(DoubleDistance distance,
DBIDRef id)
Deprecated.
|
void |
DoubleDistanceIntegerDBIDPairKNNListHeap.insert(DoubleDistance dist,
DBIDRef id)
Deprecated.
|
void |
DoubleDistanceIntegerDBIDSortedKNNList.insert(DoubleDistance dist,
DBIDRef id)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistanceIntegerDBIDPair.compareByDistance(DistanceDBIDPair<DoubleDistance> o) |
Constructor and Description |
---|
DoubleOptimizedDistanceKNNQuery(PrimitiveDistanceQuery<O,DoubleDistance> distanceQuery)
Constructor.newDoubleDistanceHeap
|
Modifier and Type | Method and Description |
---|---|
DistanceDBIDList<DoubleDistance> |
DoubleOptimizedDistanceRangeQuery.getRangeForDBID(DBIDRef id,
DoubleDistance range) |
DistanceDBIDList<DoubleDistance> |
DoubleOptimizedDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
DistanceDBIDList<DoubleDistance> |
DoubleOptimizedDistanceRangeQuery.getRangeForDBID(DBIDRef id,
DoubleDistance range) |
DistanceDBIDList<DoubleDistance> |
DoubleOptimizedDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Constructor and Description |
---|
DoubleOptimizedDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.distance(DBIDRef id1,
DBIDRef id2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(DBIDRef id1,
DBIDRef id2)
Computes the distance between two given real vectors according to this
distance function.
|
DoubleDistance |
RandomStableDistanceFunction.distance(DBIDRef o1,
DBIDRef o2) |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?> o1,
NumberVector<?> o2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.getDistanceFactory() |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.getDistanceFactory() |
DoubleDistance |
LocallyWeightedDistanceFunction.getDistanceFactory() |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
RandomStableDistanceFunction.getDistanceFactory() |
DoubleDistance |
AbstractSpatialDoubleDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
AbstractSpatialDoubleDistanceNorm.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.minDistBROKEN(SpatialComparable mbr,
V v) |
DoubleDistance |
AbstractVectorDoubleDistanceNorm.norm(NumberVector<?> obj) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?>> |
AbstractSpatialDoubleDistanceNorm.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
AbstractSimilarityAdapter.Instance.distance(DBIDRef id1,
DBIDRef id2) |
DoubleDistance |
AbstractSimilarityAdapter.getDistanceFactory() |
DoubleDistance |
AbstractSimilarityAdapter.Instance.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
<T extends O> |
ArccosSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LnSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LinearAdapterLinear.instantiate(Relation<T> database) |
abstract <T extends O> |
AbstractSimilarityAdapter.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
ArccosSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LinearAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LnSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Map<DBIDPair,DoubleDistance> |
FileBasedDoubleDistanceFunction.cache
The distance cache
|
protected DistanceParser<DoubleDistance> |
FileBasedDoubleDistanceFunction.Parameterizer.parser |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.distance(DBIDRef id1,
DBIDRef id2)
Returns the distance between the two objects specified by their objects
ids.
|
DoubleDistance |
FileBasedDoubleDistanceFunction.distance(DBIDRef id1,
DBIDRef id2)
Returns the distance between the two objects specified by their objects
ids.
|
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
FileBasedDoubleDistanceFunction.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
private void |
FileBasedDoubleDistanceFunction.loadCache(DistanceParser<DoubleDistance> parser,
File matrixfile) |
Constructor and Description |
---|
FileBasedDoubleDistanceFunction(DistanceParser<DoubleDistance> parser,
File matrixfile)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
SparseLPNormDistanceFunction.distance(SparseNumberVector<?> v1,
SparseNumberVector<?> v2) |
DoubleDistance |
SparseLPNormDistanceFunction.getDistanceFactory() |
DoubleDistance |
SparseLPNormDistanceFunction.norm(SparseNumberVector<?> obj) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
NormalizedLevenshteinDistanceFunction.distance(String o1,
String o2) |
DoubleDistance |
NormalizedLevenshteinDistanceFunction.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.distance(V o1,
V o2) |
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
DimensionSelectingDistanceFunction.getDistanceFactory() |
DoubleDistance |
SubspaceLPNormDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
SubspaceLPNormDistanceFunction.norm(NumberVector<?> obj) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
SubspaceLPNormDistanceFunction.instantiate(Relation<T> database) |
Modifier and Type | Field and Description |
---|---|
static DoubleDistance |
DoubleDistance.FACTORY
The static factory instance
|
static DoubleDistance |
DoubleDistance.INFINITE_DISTANCE
Infinite distance constant
|
static DoubleDistance |
DoubleDistance.UNDEFINED_DISTANCE
Undefined distance constant
|
static DoubleDistance |
DoubleDistance.ZERO_DISTANCE
Zero distance constant
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistance.fromDouble(double val) |
DoubleDistance |
DoubleDistance.infiniteDistance()
An infinite DoubleDistance is based on
Double.POSITIVE_INFINITY . |
DoubleDistance |
DoubleDistance.nullDistance()
A null DoubleDistance is based on 0.
|
DoubleDistance |
DoubleDistance.parseString(String val)
As pattern is required a String defining a Double.
|
DoubleDistance |
DoubleDistance.undefinedDistance()
An undefined DoubleDistance is based on
Double.NaN . |
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistance.compareTo(DoubleDistance other) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
JaccardPrimitiveSimilarityFunction.distance(O o1,
O o2) |
DoubleDistance |
JaccardPrimitiveSimilarityFunction.getDistanceFactory() |
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.getDistanceFactory() |
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.getDistanceFactory() |
DoubleDistance |
AbstractVectorDoubleSimilarityFunction.getDistanceFactory() |
DoubleDistance |
InvertedDistanceSimilarityFunction.getDistanceFactory() |
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.similarity(DBIDRef id1,
DBIDRef id2) |
DoubleDistance |
AbstractVectorDoubleSimilarityFunction.similarity(NumberVector<?> o1,
NumberVector<?> o2) |
DoubleDistance |
JaccardPrimitiveSimilarityFunction.similarity(O o1,
O o2) |
DoubleDistance |
InvertedDistanceSimilarityFunction.similarity(O o1,
O o2) |
Modifier and Type | Method and Description |
---|---|
SimilarityFunction<? super T,DoubleDistance> |
FractionalSharedNearestNeighborSimilarityFunction.Instance.getSimilarityFunction() |
<T extends O> |
JaccardPrimitiveSimilarityFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?> fv1,
NumberVector<?> fv2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?>> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
CachedDoubleDistanceKNNPreprocessor.Factory(int k,
DistanceFunction<? super O,DoubleDistance> distanceFunction,
File filename)
Index factory.
|
CachedDoubleDistanceKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,DoubleDistance> distanceFunction,
int k,
File file)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DoubleDistance |
RangeQueryFilteredPCAIndex.epsilon
Query epsilon.
|
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.epsilon
Holds the value of
RangeQueryFilteredPCAIndex.Factory.EPSILON_ID . |
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.Parameterizer.epsilon |
Modifier and Type | Field and Description |
---|---|
private KNNQuery<NV,DoubleDistance> |
KNNQueryFilteredPCAIndex.knnQuery
The kNN query instance we use.
|
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
private RangeQuery<NV,DoubleDistance> |
RangeQueryFilteredPCAIndex.rangeQuery
The kNN query instance we use.
|
Modifier and Type | Method and Description |
---|---|
protected abstract DistanceDBIDList<DoubleDistance> |
AbstractFilteredPCAIndex.objectsForPCA(DBIDRef id)
Returns the objects to be considered within the PCA for the specified query
object.
|
protected DistanceDBIDList<DoubleDistance> |
RangeQueryFilteredPCAIndex.objectsForPCA(DBIDRef id) |
protected KNNList<DoubleDistance> |
KNNQueryFilteredPCAIndex.objectsForPCA(DBIDRef id) |
Constructor and Description |
---|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Constructor and Description |
---|
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<NV> pca)
Constructor.
|
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
Integer k)
Constructor.
|
KNNQueryFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor.
|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static DoubleDistance |
DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
The default value for epsilon.
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.epsilon
The epsilon value for each dimension.
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.epsilon
The epsilon value for each dimension.
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.Parameterizer.epsilon
The epsilon value for each dimension.
|
Constructor and Description |
---|
DiSHPreferenceVectorIndex.Factory(DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected AbstractMTree<O,DoubleDistance,?,?,?> |
DoubleDistanceMetricalIndexRangeQuery.index
The index to use
|
protected AbstractMTree<O,DoubleDistance,?,?,?> |
DoubleDistanceMetricalIndexKNNQuery.index
The index to use
|
Modifier and Type | Method and Description |
---|---|
KNNList<DoubleDistance> |
DoubleDistanceMetricalIndexKNNQuery.getKNNForObject(O q,
int k) |
DistanceDBIDList<DoubleDistance> |
DoubleDistanceMetricalIndexRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
DistanceDBIDList<DoubleDistance> |
DoubleDistanceMetricalIndexRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
private void |
DoubleDistanceMetricalIndexRangeQuery.doRangeQuery(DBID id_p,
AbstractMTreeNode<O,DoubleDistance,?,?> node,
O q,
double r_q,
ModifiableDoubleDistanceDBIDList result)
Performs a range query on the specified subtree.
|
Constructor and Description |
---|
DoubleDistanceMetricalIndexKNNQuery(AbstractMTree<O,DoubleDistance,?,?,?> index,
DistanceQuery<O,DoubleDistance> distanceQuery,
PrimitiveDoubleDistanceFunction<? super O> distf)
Constructor.
|
DoubleDistanceMetricalIndexKNNQuery(AbstractMTree<O,DoubleDistance,?,?,?> index,
DistanceQuery<O,DoubleDistance> distanceQuery,
PrimitiveDoubleDistanceFunction<? super O> distf)
Constructor.
|
DoubleDistanceMetricalIndexRangeQuery(AbstractMTree<O,DoubleDistance,?,?,?> index,
DistanceQuery<O,DoubleDistance> distanceQuery,
PrimitiveDoubleDistanceFunction<? super O> distf)
Constructor.
|
DoubleDistanceMetricalIndexRangeQuery(AbstractMTree<O,DoubleDistance,?,?,?> index,
DistanceQuery<O,DoubleDistance> distanceQuery,
PrimitiveDoubleDistanceFunction<? super O> distf)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
KNNList<DoubleDistance> |
MinimalisticMemoryKDTree.KDTreeKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
DoubleDistanceDBIDPairList |
MinimalisticMemoryKDTree.KDTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Constructor and Description |
---|
MinimalisticMemoryKDTree.KDTreeKNNQuery(DistanceQuery<O,DoubleDistance> distanceQuery,
DoubleNorm<? super O> norm)
Constructor.
|
MinimalisticMemoryKDTree.KDTreeRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery,
DoubleNorm<? super O> norm)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DistanceDBIDList<DoubleDistance> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
DistanceDBIDList<DoubleDistance> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Constructor and Description |
---|
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor.
|
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistanceDBIDPairList |
PartialVAFile.PartialVAFileRangeQuery.getRangeForObject(V query,
DoubleDistance range) |
DoubleDistanceDBIDPairList |
VAFile.VAFileRangeQuery.getRangeForObject(V query,
DoubleDistance range) |
Constructor and Description |
---|
PartialVAFile.PartialVAFileKNNQuery(DistanceQuery<V,DoubleDistance> ddq,
double p,
BitSet subspace)
Constructor.
|
PartialVAFile.PartialVAFileRangeQuery(DistanceQuery<V,DoubleDistance> ddq,
double p,
BitSet subspace)
Constructor.
|
VAFile.VAFileKNNQuery(DistanceQuery<V,DoubleDistance> distanceQuery,
double p)
Constructor.
|
VAFile.VAFileRangeQuery(DistanceQuery<V,DoubleDistance> distanceQuery,
double p)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private PrimitiveDistanceFunction<? super V,DoubleDistance> |
WeightedCovarianceMatrixBuilder.weightDistance
Holds the distance function used for weight calculation.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceClusterOrderEntry.getReachability()
Returns the reachability distance of this entry
|
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistanceClusterOrderEntry.compareTo(ClusterOrderEntry<DoubleDistance> o) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
NaiveAgglomerativeHierarchicalClustering4.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult<DoubleDistance> |
NaiveAgglomerativeHierarchicalClustering4.run(Database db,
Relation<O> relation)
Run the algorithm
|