Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
sets in a database.
|
class |
EM<V extends NumberVector<?>>
Provides the EM algorithm (clustering by expectation maximization).
|
class |
NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Mean-shift based clustering algorithm.
|
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction.
|
class |
SNNClustering<O>
Shared nearest neighbor clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH<V extends NumberVector<?>>
Provides the CASH algorithm, an subspace clustering algorithm based on the
Hough transform.
|
class |
COPAC<V extends NumberVector<?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according
to the correlation dimension of its objects and to then perform an arbitrary
clustering algorithm over the partitions.
|
class |
ERiC<V extends NumberVector<?>>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
class |
FourC<V extends NumberVector<?>>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
ORCLUS<V extends NumberVector<?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
dimensional spaces.
|
Modifier and Type | Field and Description |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC |
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition.
|
Modifier and Type | Method and Description |
---|---|
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm.
|
Constructor and Description |
---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneralizedDBSCAN
Generalized DBSCAN, density-based clustering with noise.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations.
|
class |
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
class |
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using MacQueen style incremental updates.
|
class |
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-medians clustering algorithm, using Lloyd-style bulk
iterations.
|
class |
KMedoidsEM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
"Partitioning Around Medoids" approach.
|
class |
KMedoidsPAM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using the
"Partitioning Around Medoids" approach.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SubspaceClusteringAlgorithm<M extends SubspaceModel<?>>
Interface for subspace clustering algorithms that use a model derived from
SubspaceModel , that can then be post-processed for outlier detection. |
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector<?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
class |
DiSH<V extends NumberVector<?>>
Algorithm for detecting subspace hierarchies.
|
class |
PreDeCon<V extends NumberVector<?>>
PreDeCon computes clusters of subspace preference weighted connected points.
|
class |
PROCLUS<V extends NumberVector<?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
high dimensional spaces.
|
class |
SUBCLU<V extends NumberVector<?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
Modifier and Type | Class and Description |
---|---|
class |
ByLabelClustering
Pseudo clustering using labels.
|
class |
ByLabelHierarchicalClustering
Pseudo clustering using labels.
|
class |
ByLabelOrAllInOneClustering
Trivial class that will try to cluster by label, and fall back to an
"all-in-one" clustering.
|
class |
ByModelClustering
Pseudo clustering using annotated models.
|
class |
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big
cluster.
|
class |
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise.
|
Modifier and Type | Field and Description |
---|---|
private ClusteringAlgorithm<?> |
EvaluateClustering.referencealg
Reference algorithm.
|
protected ClusteringAlgorithm<?> |
EvaluateClustering.Parameterizer.referencealg |
Constructor and Description |
---|
EvaluateClustering(ClusteringAlgorithm<?> referencealg,
boolean noiseSpecialHandling,
boolean selfPairing)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
SameSizeKMeansAlgorithm<V extends NumberVector<?>>
K-means variation that produces equally sized clusters.
|