|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DoubleDistance | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.database.query | Database queries - computing distances, neighbors, similarities - API and general documentation. |
de.lmu.ifi.dbs.elki.database.query.knn | Prepared queries for k nearest neighbor (kNN) queries. |
de.lmu.ifi.dbs.elki.database.query.range | Prepared queries for ε-range queries. |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | Distance functions deriving distances from e.g. similarity measures |
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.external | Distance functions using external data sources. |
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. |
de.lmu.ifi.dbs.elki.distance.distancevalue | Distance values, i.e. object storing an actual distance value along with comparison functions and value parsers. |
de.lmu.ifi.dbs.elki.distance.similarityfunction | Similarity functions. |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. |
de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. |
de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | Queries on the R-Tree family of indexes: kNN and range queries. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.result.optics | Result classes for OPTICS. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering declared as DoubleDistance | |
---|---|
protected DoubleDistance |
AbstractProjectedDBSCAN.epsilon
Holds the value of AbstractProjectedDBSCAN.EPSILON_ID . |
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type DoubleDistance | |
---|---|
private DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.distanceFunction
The euclidean distance function. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type DoubleDistance | |
---|---|
protected DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function. |
protected DistanceQuery<V,DoubleDistance> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DoubleDistance | |
---|---|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering with type arguments of type DoubleDistance | |
---|---|
protected void |
AbstractProjectedDBSCAN.expandCluster(LocallyWeightedDistanceFunction.Instance<V> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN. |
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DoubleDistance | |
---|---|
AbstractProjectedDBSCAN(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as DoubleDistance | |
---|---|
(package private) DoubleDistance |
ORCLUS.ProjectedEnergy.projectedEnergy
|
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type DoubleDistance | |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its closest seed. |
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality dim for the
specified cluster. |
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new |
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters. |
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type DoubleDistance | |
---|---|
FourC(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor. |
|
ORCLUS.ProjectedEnergy(int i,
int j,
ORCLUS.ORCLUSCluster cluster,
DoubleDistance projectedEnergy)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as DoubleDistance | |
---|---|
private DoubleDistance |
SUBCLU.epsilon
Holds the value of SUBCLU.EPSILON_ID . |
protected DoubleDistance |
SUBCLU.Parameterizer.epsilon
|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return DoubleDistance | |
---|---|
private DoubleDistance |
PROCLUS.manhattanSegmentalDistance(V o1,
V o2,
Set<Integer> dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the specified dimensions. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type DoubleDistance | |
---|---|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type arguments of type DoubleDistance | |
---|---|
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the specified medoid set. |
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the specified medoid set. |
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
private ModifiableDBIDs |
PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type DoubleDistance | |
---|---|
PreDeCon(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor. |
|
SUBCLU(AbstractDimensionsSelectingDoubleDistanceFunction<V> distanceFunction,
DoubleDistance epsilon,
int minpts)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier with type parameters of type DoubleDistance | |
---|---|
private PrimitiveSimilarityFunction<? super V,DoubleDistance> |
ABOD.primitiveKernelFunction
Store the configured Kernel version |
protected PrimitiveSimilarityFunction<V,DoubleDistance> |
ABOD.Parameterizer.primitiveKernelFunction
|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type DoubleDistance | |
---|---|
private KNNList<DoubleDistance> |
SOD.getKNN(Relation<V> database,
SimilarityQuery<V,IntegerDistance> snnInstance,
DBID queryObject)
Provides the k nearest neighbors in terms of the shared nearest neighbor distance. |
Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type DoubleDistance | |
---|---|
ABOD(int k,
int sampleSize,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
|
ABOD(int k,
int sampleSize,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
|
ABOD(int k,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
|
ABOD(int k,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query |
---|
Methods in de.lmu.ifi.dbs.elki.database.query that return DoubleDistance | |
---|---|
DoubleDistance |
DoubleDistanceResultPair.getDistance()
|
DoubleDistance |
DoubleDistanceResultPair.getFirst()
Deprecated. Use DoubleDistanceResultPair.getDoubleDistance() or DoubleDistanceResultPair.getDistance() for clearness. |
Methods in de.lmu.ifi.dbs.elki.database.query with parameters of type DoubleDistance | |
---|---|
void |
DoubleDistanceResultPair.setDistance(DoubleDistance distance)
|
Method parameters in de.lmu.ifi.dbs.elki.database.query with type arguments of type DoubleDistance | |
---|---|
int |
DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o)
|
int |
DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query.knn |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.knn that return types with arguments of type DoubleDistance | |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj,
int k)
|
Method parameters in de.lmu.ifi.dbs.elki.database.query.knn with type arguments of type DoubleDistance | |
---|---|
protected void |
LinearScanRawDoubleDistanceKNNQuery.linearScanBatchKNN(List<O> objs,
List<KNNHeap<DoubleDistance>> heaps)
|
Constructor parameters in de.lmu.ifi.dbs.elki.database.query.knn with type arguments of type DoubleDistance | |
---|---|
LinearScanRawDoubleDistanceKNNQuery(PrimitiveDistanceQuery<O,DoubleDistance> distanceQuery)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query.range |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.range that return types with arguments of type DoubleDistance | |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Methods in de.lmu.ifi.dbs.elki.database.query.range with parameters of type DoubleDistance | |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Constructor parameters in de.lmu.ifi.dbs.elki.database.query.range with type arguments of type DoubleDistance | |
---|---|
LinearScanRawDoubleDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DoubleDistance | |
---|---|
DoubleDistance |
SquaredEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
ManhattanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
EuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
MaximumDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
MinimumDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.distance(DBID id1,
DBID id2)
|
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(DBID id1,
DBID id2)
Computes the distance between two given real vectors according to this distance function. |
DoubleDistance |
RandomStableDistanceFunction.distance(DBID o1,
DBID o2)
|
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
AbstractVectorDoubleDistanceFunction.getDistanceFactory()
|
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.getDistanceFactory()
|
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.getDistanceFactory()
|
DoubleDistance |
LocallyWeightedDistanceFunction.getDistanceFactory()
|
DoubleDistance |
RandomStableDistanceFunction.getDistanceFactory()
|
DoubleDistance |
SquaredEuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
ManhattanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
EuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
MaximumDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
MinimumDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.minDistBROKEN(SpatialComparable mbr,
V v)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return types with arguments of type DoubleDistance | ||
---|---|---|
|
AbstractCosineDistanceFunction.instantiate(Relation<T> relation)
|
|
|
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
ManhattanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
EuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MaximumDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MinimumDistanceFunction.instantiate(Relation<T> relation)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return DoubleDistance | |
---|---|
DoubleDistance |
AbstractSimilarityAdapter.Instance.distance(DBID id1,
DBID id2)
|
DoubleDistance |
AbstractSimilarityAdapter.getDistanceFactory()
|
DoubleDistance |
AbstractSimilarityAdapter.Instance.getDistanceFactory()
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return types with arguments of type DoubleDistance | ||
---|---|---|
abstract
|
AbstractSimilarityAdapter.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLn.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLinear.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterArccos.instantiate(Relation<T> database)
|
Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with type arguments of type DoubleDistance | |
---|---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterArccos.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLn.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that return DoubleDistance | |
---|---|
DoubleDistance |
HistogramIntersectionDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
HistogramIntersectionDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that return types with arguments of type DoubleDistance | ||
---|---|---|
|
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.external |
---|
Fields in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type parameters of type DoubleDistance | |
---|---|
private Map<DBIDPair,DoubleDistance> |
FileBasedDoubleDistanceFunction.cache
The distance cache |
protected DistanceParser<DoubleDistance> |
FileBasedDoubleDistanceFunction.Parameterizer.parser
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.external that return DoubleDistance | |
---|---|
DoubleDistance |
FileBasedDoubleDistanceFunction.distance(DBID id1,
DBID id2)
Returns the distance between the two objects specified by their objects ids. |
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.distance(DBID id1,
DBID id2)
Returns the distance between the two objects specified by their objects ids. |
DoubleDistance |
FileBasedDoubleDistanceFunction.getDistanceFactory()
|
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.getDistanceFactory()
|
Method parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type arguments of type DoubleDistance | |
---|---|
private void |
FileBasedDoubleDistanceFunction.loadCache(DistanceParser<DoubleDistance> parser,
File matrixfile)
|
Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type arguments of type DoubleDistance | |
---|---|
FileBasedDoubleDistanceFunction(DistanceParser<DoubleDistance> parser,
File matrixfile)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that return DoubleDistance | |
---|---|
DoubleDistance |
DimensionsSelectingEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
DimensionSelectingDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
DimensionSelectingDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2)
|
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.distance(V o1,
V o2)
|
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.getDistanceFactory()
|
DoubleDistance |
DimensionSelectingDistanceFunction.getDistanceFactory()
|
DoubleDistance |
DimensionsSelectingEuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
DoubleDistance |
DimensionSelectingDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2)
|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that return types with arguments of type DoubleDistance | ||
---|---|---|
|
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database)
|
|
|
DimensionSelectingDistanceFunction.instantiate(Relation<T> database)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancevalue |
---|
Fields in de.lmu.ifi.dbs.elki.distance.distancevalue declared as DoubleDistance | |
---|---|
static DoubleDistance |
DoubleDistance.FACTORY
The static factory instance |
Methods in de.lmu.ifi.dbs.elki.distance.distancevalue that return DoubleDistance | |
---|---|
DoubleDistance |
DoubleDistance.fromDouble(double val)
|
DoubleDistance |
DoubleDistance.infiniteDistance()
An infinite DoubleDistance is based on Double.POSITIVE_INFINITY . |
DoubleDistance |
DoubleDistance.minus(DoubleDistance distance)
|
DoubleDistance |
DoubleDistance.nullDistance()
A null DoubleDistance is based on 0. |
DoubleDistance |
DoubleDistance.parseString(String val)
As pattern is required a String defining a Double. |
DoubleDistance |
DoubleDistance.plus(DoubleDistance distance)
|
DoubleDistance |
DoubleDistance.times(double lambda)
Returns a new distance as the product of this distance and the given double value. |
DoubleDistance |
DoubleDistance.times(DoubleDistance distance)
Returns a new distance as the product of this distance and the given distance. |
DoubleDistance |
DoubleDistance.undefinedDistance()
An undefined DoubleDistance is based on Double.NaN . |
Methods in de.lmu.ifi.dbs.elki.distance.distancevalue with parameters of type DoubleDistance | |
---|---|
int |
DoubleDistance.compareTo(DoubleDistance other)
|
DoubleDistance |
DoubleDistance.minus(DoubleDistance distance)
|
DoubleDistance |
DoubleDistance.plus(DoubleDistance distance)
|
DoubleDistance |
DoubleDistance.times(DoubleDistance distance)
Returns a new distance as the product of this distance and the given distance. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.similarityfunction |
---|
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction that return DoubleDistance | |
---|---|
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.getDistanceFactory()
|
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.getDistanceFactory()
|
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.similarity(DBID id1,
DBID id2)
|
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return DoubleDistance | |
---|---|
DoubleDistance |
FooKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2)
|
DoubleDistance |
LinearKernelFunction.distance(O fv1,
O fv2)
|
DoubleDistance |
FooKernelFunction.getDistanceFactory()
|
DoubleDistance |
LinearKernelFunction.getDistanceFactory()
|
DoubleDistance |
PolynomialKernelFunction.getDistanceFactory()
|
DoubleDistance |
FooKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides an experimental kernel similarity between the given two vectors. |
DoubleDistance |
PolynomialKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the linear kernel similarity between the given two vectors. |
DoubleDistance |
LinearKernelFunction.similarity(O o1,
O o2)
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2 |
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return types with arguments of type DoubleDistance | ||
---|---|---|
|
FooKernelFunction.instantiate(Relation<T> database)
|
|
|
PolynomialKernelFunction.instantiate(Relation<T> database)
|
|
|
LinearKernelFunction.instantiate(Relation<T> database)
|
Constructor parameters in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with type arguments of type DoubleDistance | |
---|---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database)
Deprecated. ID mapping is not reliable! |
|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database,
ArrayDBIDs ids)
Provides a new kernel matrix. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca declared as DoubleDistance | |
---|---|
private DoubleDistance |
RangeQueryFilteredPCAIndex.epsilon
Query epsilon |
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.epsilon
Holds the value of RangeQueryFilteredPCAIndex.Factory.EPSILON_ID . |
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.Parameterizer.epsilon
|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with type parameters of type DoubleDistance | |
---|---|
private KNNQuery<NV,DoubleDistance> |
KNNQueryFilteredPCAIndex.knnQuery
The kNN query instance we use |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
private RangeQuery<NV,DoubleDistance> |
RangeQueryFilteredPCAIndex.rangeQuery
The kNN query instance we use |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that return types with arguments of type DoubleDistance | |
---|---|
protected abstract List<DistanceResultPair<DoubleDistance>> |
AbstractFilteredPCAIndex.objectsForPCA(DBID id)
Returns the objects to be considered within the PCA for the specified query object. |
protected List<DistanceResultPair<DoubleDistance>> |
KNNQueryFilteredPCAIndex.objectsForPCA(DBID id)
|
protected List<DistanceResultPair<DoubleDistance>> |
RangeQueryFilteredPCAIndex.objectsForPCA(DBID id)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type DoubleDistance | |
---|---|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor. |
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor. |
Constructor parameters in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with type arguments of type DoubleDistance | |
---|---|
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<NV> pca)
Constructor. |
|
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
Integer k)
Constructor. |
|
KNNQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor. |
|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor. |
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.preprocessed.preference |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.preference declared as DoubleDistance | |
---|---|
static DoubleDistance |
DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
The default value for epsilon. |
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.epsilon
The epsilon value for each dimension; |
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.epsilon
The epsilon value for each dimension; |
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.Parameterizer.epsilon
The epsilon value for each dimension; |
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type DoubleDistance | |
---|---|
DiSHPreferenceVectorIndex.Factory(DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor. |
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return DoubleDistance | |
---|---|
DoubleDistance |
DoubleDistanceRStarTreeKNNQuery.getDistanceFactory()
|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return types with arguments of type DoubleDistance | |
---|---|
protected List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object,
double epsilon)
Perform the actual query process. |
List<List<DistanceResultPair<DoubleDistance>>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with parameters of type DoubleDistance | |
---|---|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Method parameters in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with type arguments of type DoubleDistance | |
---|---|
protected void |
DoubleDistanceRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
Map<DBID,KNNHeap<DoubleDistance>> knnLists)
Performs a batch knn query. |
protected void |
DoubleDistanceRStarTreeKNNQuery.doKNNQuery(O object,
KNNHeap<DoubleDistance> knnList)
Performs a k-nearest neighbor query for the given NumberVector with the given parameter k and the according distance function. |
void |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<DoubleDistance>> heaps)
|
Constructor parameters in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with type arguments of type DoubleDistance | |
---|---|
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor. |
|
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor. |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Fields in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with type parameters of type DoubleDistance | |
---|---|
private PrimitiveDistanceFunction<? super V,DoubleDistance> |
WeightedCovarianceMatrixBuilder.weightDistance
Holds the distance function used for weight calculation |
Uses of DoubleDistance in de.lmu.ifi.dbs.elki.result.optics |
---|
Methods in de.lmu.ifi.dbs.elki.result.optics that return DoubleDistance | |
---|---|
DoubleDistance |
DoubleDistanceClusterOrderEntry.getReachability()
Returns the reachability distance of this entry |
Method parameters in de.lmu.ifi.dbs.elki.result.optics with type arguments of type DoubleDistance | |
---|---|
int |
DoubleDistanceClusterOrderEntry.compareTo(ClusterOrderEntry<DoubleDistance> o)
|
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |