Uses of Class
de.lmu.ifi.dbs.elki.distance.distancevalue.DoubleDistance

Packages that use DoubleDistance
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation. 
de.lmu.ifi.dbs.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries. 
de.lmu.ifi.dbs.elki.database.query.range Prepared queries for ε-range queries. 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.external Distance functions using external data sources. 
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace Distance functions based on subspaces. 
de.lmu.ifi.dbs.elki.distance.distancevalue Distance values, i.e. object storing an actual distance value along with comparison functions and value parsers. 
de.lmu.ifi.dbs.elki.distance.similarityfunction Similarity functions. 
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel Kernel functions. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.preference Indexes storing preference vectors. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.result.optics Result classes for OPTICS. 
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering declared as DoubleDistance
protected  DoubleDistance AbstractProjectedDBSCAN.epsilon
          Holds the value of AbstractProjectedDBSCAN.EPSILON_ID.
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type DoubleDistance
private  DistanceFunction<? super V,DoubleDistance> AbstractProjectedClustering.distanceFunction
          The euclidean distance function.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type DoubleDistance
protected  DistanceFunction<? super V,DoubleDistance> AbstractProjectedClustering.getDistanceFunction()
          Returns the distance function.
protected  DistanceQuery<V,DoubleDistance> AbstractProjectedClustering.getDistanceQuery(Database database)
          Returns the distance function.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DoubleDistance
protected  void OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder, Database database, RangeQuery<O,DoubleDistance> rangeQuery, DBID objectID, DoubleDistance epsilon, FiniteProgress progress)
          OPTICS-function expandClusterOrder.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering with type arguments of type DoubleDistance
protected  void AbstractProjectedDBSCAN.expandCluster(LocallyWeightedDistanceFunction.Instance<V> distFunc, RangeQuery<V,DoubleDistance> rangeQuery, DBID startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
          ExpandCluster function of DBSCAN.
protected  void OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder, Database database, RangeQuery<O,DoubleDistance> rangeQuery, DBID objectID, DoubleDistance epsilon, FiniteProgress progress)
          OPTICS-function expandClusterOrder.
protected  void OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder, Database database, RangeQuery<O,DoubleDistance> rangeQuery, DBID objectID, DoubleDistance epsilon, FiniteProgress progress)
          OPTICS-function expandClusterOrder.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DoubleDistance
AbstractProjectedDBSCAN(DoubleDistance epsilon, int minpts, LocallyWeightedDistanceFunction<V> distanceFunction, int lambda)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as DoubleDistance
(package private)  DoubleDistance ORCLUS.ProjectedEnergy.projectedEnergy
           
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type DoubleDistance
private  void ORCLUS.assign(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters)
          Creates a partitioning of the database by assigning each object to its closest seed.
private  Matrix ORCLUS.findBasis(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster cluster, int dim)
          Finds the basis of the subspace of dimensionality dim for the specified cluster.
private  void ORCLUS.merge(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)
          Reduces the number of seeds to k_new
private  ORCLUS.ProjectedEnergy ORCLUS.projectedEnergy(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)
          Computes the projected energy of the specified clusters.
private  ORCLUS.ORCLUSCluster ORCLUS.union(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)
          Returns the union of the two specified clusters.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type DoubleDistance
FourC(DoubleDistance epsilon, int minpts, LocallyWeightedDistanceFunction<V> distanceFunction, int lambda)
          Constructor.
ORCLUS.ProjectedEnergy(int i, int j, ORCLUS.ORCLUSCluster cluster, DoubleDistance projectedEnergy)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as DoubleDistance
private  DoubleDistance SUBCLU.epsilon
          Holds the value of SUBCLU.EPSILON_ID.
protected  DoubleDistance SUBCLU.Parameterizer.epsilon
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return DoubleDistance
private  DoubleDistance PROCLUS.manhattanSegmentalDistance(V o1, V o2, Set<Integer> dimensions)
          Returns the Manhattan segmental distance between o1 and o2 relative to the specified dimensions.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type DoubleDistance
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type arguments of type DoubleDistance
private  Map<DBID,Set<Integer>> PROCLUS.findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Determines the set of correlated dimensions for each medoid in the specified medoid set.
private  Map<DBID,Set<Integer>> PROCLUS.findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Determines the set of correlated dimensions for each medoid in the specified medoid set.
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
private  ModifiableDBIDs PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random)
          Returns a piercing set of k medoids from the specified sample set.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type DoubleDistance
PreDeCon(DoubleDistance epsilon, int minpts, LocallyWeightedDistanceFunction<V> distanceFunction, int lambda)
          Constructor.
SUBCLU(AbstractDimensionsSelectingDoubleDistanceFunction<V> distanceFunction, DoubleDistance epsilon, int minpts)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier with type parameters of type DoubleDistance
private  PrimitiveSimilarityFunction<? super V,DoubleDistance> ABOD.primitiveKernelFunction
          Store the configured Kernel version
protected  PrimitiveSimilarityFunction<V,DoubleDistance> ABOD.Parameterizer.primitiveKernelFunction
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type DoubleDistance
private  KNNList<DoubleDistance> SOD.getKNN(Relation<V> database, SimilarityQuery<V,IntegerDistance> snnInstance, DBID queryObject)
          Provides the k nearest neighbors in terms of the shared nearest neighbor distance.
 

Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type DoubleDistance
ABOD(int k, int sampleSize, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
ABOD(int k, int sampleSize, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
ABOD(int k, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
ABOD(int k, PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction, DistanceFunction<V,DoubleDistance> distanceFunction)
          Actual constructor, with parameters.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query
 

Methods in de.lmu.ifi.dbs.elki.database.query that return DoubleDistance
 DoubleDistance DoubleDistanceResultPair.getDistance()
           
 DoubleDistance DoubleDistanceResultPair.getFirst()
          Deprecated. Use DoubleDistanceResultPair.getDoubleDistance() or DoubleDistanceResultPair.getDistance() for clearness.
 

Methods in de.lmu.ifi.dbs.elki.database.query with parameters of type DoubleDistance
 void DoubleDistanceResultPair.setDistance(DoubleDistance distance)
           
 

Method parameters in de.lmu.ifi.dbs.elki.database.query with type arguments of type DoubleDistance
 int DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o)
           
 int DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query.knn
 

Methods in de.lmu.ifi.dbs.elki.database.query.knn that return types with arguments of type DoubleDistance
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj, int k)
           
 

Method parameters in de.lmu.ifi.dbs.elki.database.query.knn with type arguments of type DoubleDistance
protected  void LinearScanRawDoubleDistanceKNNQuery.linearScanBatchKNN(List<O> objs, List<KNNHeap<DoubleDistance>> heaps)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.database.query.knn with type arguments of type DoubleDistance
LinearScanRawDoubleDistanceKNNQuery(PrimitiveDistanceQuery<O,DoubleDistance> distanceQuery)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.database.query.range
 

Methods in de.lmu.ifi.dbs.elki.database.query.range that return types with arguments of type DoubleDistance
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Methods in de.lmu.ifi.dbs.elki.database.query.range with parameters of type DoubleDistance
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.database.query.range with type arguments of type DoubleDistance
LinearScanRawDoubleDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DoubleDistance
 DoubleDistance SquaredEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance ManhattanDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance EuclideanDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance MaximumDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance MinimumDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance LocallyWeightedDistanceFunction.Instance.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance SharedNearestNeighborJaccardDistanceFunction.Instance.distance(DBID id1, DBID id2)
           
 DoubleDistance LocallyWeightedDistanceFunction.Instance.distance(DBID id1, DBID id2)
          Computes the distance between two given real vectors according to this distance function.
 DoubleDistance RandomStableDistanceFunction.distance(DBID o1, DBID o2)
           
 DoubleDistance AbstractVectorDoubleDistanceFunction.distance(NumberVector<?,?> o1, NumberVector<?,?> o2)
           
 DoubleDistance LocallyWeightedDistanceFunction.Instance.distance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance AbstractVectorDoubleDistanceFunction.getDistanceFactory()
           
 DoubleDistance SharedNearestNeighborJaccardDistanceFunction.getDistanceFactory()
           
 DoubleDistance SharedNearestNeighborJaccardDistanceFunction.Instance.getDistanceFactory()
           
 DoubleDistance LocallyWeightedDistanceFunction.getDistanceFactory()
           
 DoubleDistance RandomStableDistanceFunction.getDistanceFactory()
           
 DoubleDistance SquaredEuclideanDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance ManhattanDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance EuclideanDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance MaximumDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance MinimumDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance LocallyWeightedDistanceFunction.Instance.minDistBROKEN(SpatialComparable mbr, V v)
           
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return types with arguments of type DoubleDistance
<T extends NumberVector<?,?>>
PrimitiveDistanceQuery<T,DoubleDistance>
AbstractCosineDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
ManhattanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
EuclideanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialDistanceQuery<T,DoubleDistance>
MaximumDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
MinimumDistanceFunction.instantiate(Relation<T> relation)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return DoubleDistance
 DoubleDistance AbstractSimilarityAdapter.Instance.distance(DBID id1, DBID id2)
           
 DoubleDistance AbstractSimilarityAdapter.getDistanceFactory()
           
 DoubleDistance AbstractSimilarityAdapter.Instance.getDistanceFactory()
           
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return types with arguments of type DoubleDistance
abstract
<T extends O>
DistanceQuery<T,DoubleDistance>
AbstractSimilarityAdapter.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLn.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLinear.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterArccos.instantiate(Relation<T> database)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with type arguments of type DoubleDistance
AbstractSimilarityAdapter.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterArccos.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLinear.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLn.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that return DoubleDistance
 DoubleDistance HistogramIntersectionDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance HistogramIntersectionDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that return types with arguments of type DoubleDistance
<T extends NumberVector<?,?>>
SpatialDistanceQuery<T,DoubleDistance>
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.external
 

Fields in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type parameters of type DoubleDistance
private  Map<DBIDPair,DoubleDistance> FileBasedDoubleDistanceFunction.cache
          The distance cache
protected  DistanceParser<DoubleDistance> FileBasedDoubleDistanceFunction.Parameterizer.parser
           
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.external that return DoubleDistance
 DoubleDistance FileBasedDoubleDistanceFunction.distance(DBID id1, DBID id2)
          Returns the distance between the two objects specified by their objects ids.
 DoubleDistance DiskCacheBasedDoubleDistanceFunction.distance(DBID id1, DBID id2)
          Returns the distance between the two objects specified by their objects ids.
 DoubleDistance FileBasedDoubleDistanceFunction.getDistanceFactory()
           
 DoubleDistance DiskCacheBasedDoubleDistanceFunction.getDistanceFactory()
           
 

Method parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type arguments of type DoubleDistance
private  void FileBasedDoubleDistanceFunction.loadCache(DistanceParser<DoubleDistance> parser, File matrixfile)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.distance.distancefunction.external with type arguments of type DoubleDistance
FileBasedDoubleDistanceFunction(DistanceParser<DoubleDistance> parser, File matrixfile)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that return DoubleDistance
 DoubleDistance DimensionsSelectingEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance DimensionSelectingDistanceFunction.centerDistance(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance DimensionSelectingDistanceFunction.distance(NumberVector<?,?> o1, NumberVector<?,?> o2)
           
 DoubleDistance AbstractDimensionsSelectingDoubleDistanceFunction.distance(V o1, V o2)
           
 DoubleDistance AbstractDimensionsSelectingDoubleDistanceFunction.getDistanceFactory()
           
 DoubleDistance DimensionSelectingDistanceFunction.getDistanceFactory()
           
 DoubleDistance DimensionsSelectingEuclideanDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 DoubleDistance DimensionSelectingDistanceFunction.minDist(SpatialComparable mbr1, SpatialComparable mbr2)
           
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that return types with arguments of type DoubleDistance
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
DimensionSelectingDistanceFunction.instantiate(Relation<T> database)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.distancevalue
 

Fields in de.lmu.ifi.dbs.elki.distance.distancevalue declared as DoubleDistance
static DoubleDistance DoubleDistance.FACTORY
          The static factory instance
 

Methods in de.lmu.ifi.dbs.elki.distance.distancevalue that return DoubleDistance
 DoubleDistance DoubleDistance.fromDouble(double val)
           
 DoubleDistance DoubleDistance.infiniteDistance()
          An infinite DoubleDistance is based on Double.POSITIVE_INFINITY.
 DoubleDistance DoubleDistance.minus(DoubleDistance distance)
           
 DoubleDistance DoubleDistance.nullDistance()
          A null DoubleDistance is based on 0.
 DoubleDistance DoubleDistance.parseString(String val)
          As pattern is required a String defining a Double.
 DoubleDistance DoubleDistance.plus(DoubleDistance distance)
           
 DoubleDistance DoubleDistance.times(double lambda)
          Returns a new distance as the product of this distance and the given double value.
 DoubleDistance DoubleDistance.times(DoubleDistance distance)
          Returns a new distance as the product of this distance and the given distance.
 DoubleDistance DoubleDistance.undefinedDistance()
          An undefined DoubleDistance is based on Double.NaN.
 

Methods in de.lmu.ifi.dbs.elki.distance.distancevalue with parameters of type DoubleDistance
 int DoubleDistance.compareTo(DoubleDistance other)
           
 DoubleDistance DoubleDistance.minus(DoubleDistance distance)
           
 DoubleDistance DoubleDistance.plus(DoubleDistance distance)
           
 DoubleDistance DoubleDistance.times(DoubleDistance distance)
          Returns a new distance as the product of this distance and the given distance.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.similarityfunction
 

Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction that return DoubleDistance
 DoubleDistance FractionalSharedNearestNeighborSimilarityFunction.getDistanceFactory()
           
 DoubleDistance FractionalSharedNearestNeighborSimilarityFunction.Instance.getDistanceFactory()
           
 DoubleDistance FractionalSharedNearestNeighborSimilarityFunction.Instance.similarity(DBID id1, DBID id2)
           
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 

Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return DoubleDistance
 DoubleDistance FooKernelFunction.distance(NumberVector<?,?> fv1, NumberVector<?,?> fv2)
           
 DoubleDistance PolynomialKernelFunction.distance(NumberVector<?,?> fv1, NumberVector<?,?> fv2)
           
 DoubleDistance LinearKernelFunction.distance(O fv1, O fv2)
           
 DoubleDistance FooKernelFunction.getDistanceFactory()
           
 DoubleDistance LinearKernelFunction.getDistanceFactory()
           
 DoubleDistance PolynomialKernelFunction.getDistanceFactory()
           
 DoubleDistance FooKernelFunction.similarity(NumberVector<?,?> o1, NumberVector<?,?> o2)
          Provides an experimental kernel similarity between the given two vectors.
 DoubleDistance PolynomialKernelFunction.similarity(NumberVector<?,?> o1, NumberVector<?,?> o2)
          Provides the linear kernel similarity between the given two vectors.
 DoubleDistance LinearKernelFunction.similarity(O o1, O o2)
          Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2
 

Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return types with arguments of type DoubleDistance
<T extends NumberVector<?,?>>
DistanceSimilarityQuery<T,DoubleDistance>
FooKernelFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
DistanceSimilarityQuery<T,DoubleDistance>
PolynomialKernelFunction.instantiate(Relation<T> database)
           
<T extends O>
DistanceSimilarityQuery<T,DoubleDistance>
LinearKernelFunction.instantiate(Relation<T> database)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with type arguments of type DoubleDistance
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction, Relation<? extends O> database)
          Deprecated. ID mapping is not reliable!
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction, Relation<? extends O> database, ArrayDBIDs ids)
          Provides a new kernel matrix.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca declared as DoubleDistance
private  DoubleDistance RangeQueryFilteredPCAIndex.epsilon
          Query epsilon
protected  DoubleDistance RangeQueryFilteredPCAIndex.Factory.epsilon
          Holds the value of RangeQueryFilteredPCAIndex.Factory.EPSILON_ID.
protected  DoubleDistance RangeQueryFilteredPCAIndex.Factory.Parameterizer.epsilon
           
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with type parameters of type DoubleDistance
private  KNNQuery<NV,DoubleDistance> KNNQueryFilteredPCAIndex.knnQuery
          The kNN query instance we use
protected  DistanceFunction<NV,DoubleDistance> AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
          Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID.
protected  DistanceFunction<NV,DoubleDistance> AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
          Holds the instance of the distance function specified by AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID.
private  RangeQuery<NV,DoubleDistance> RangeQueryFilteredPCAIndex.rangeQuery
          The kNN query instance we use
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that return types with arguments of type DoubleDistance
protected abstract  List<DistanceResultPair<DoubleDistance>> AbstractFilteredPCAIndex.objectsForPCA(DBID id)
          Returns the objects to be considered within the PCA for the specified query object.
protected  List<DistanceResultPair<DoubleDistance>> KNNQueryFilteredPCAIndex.objectsForPCA(DBID id)
           
protected  List<DistanceResultPair<DoubleDistance>> RangeQueryFilteredPCAIndex.objectsForPCA(DBID id)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type DoubleDistance
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<V> pca, DoubleDistance epsilon)
          Constructor.
RangeQueryFilteredPCAIndex(Relation<NV> database, PCAFilteredRunner<NV> pca, RangeQuery<NV,DoubleDistance> rangeQuery, DoubleDistance epsilon)
          Constructor.
 

Constructor parameters in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with type arguments of type DoubleDistance
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<NV> pca)
          Constructor.
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<V> pca, Integer k)
          Constructor.
KNNQueryFilteredPCAIndex(Relation<NV> database, PCAFilteredRunner<NV> pca, KNNQuery<NV,DoubleDistance> knnQuery, int k)
          Constructor.
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction, PCAFilteredRunner<V> pca, DoubleDistance epsilon)
          Constructor.
RangeQueryFilteredPCAIndex(Relation<NV> database, PCAFilteredRunner<NV> pca, RangeQuery<NV,DoubleDistance> rangeQuery, DoubleDistance epsilon)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.preprocessed.preference
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.preference declared as DoubleDistance
static DoubleDistance DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
          The default value for epsilon.
protected  DoubleDistance[] DiSHPreferenceVectorIndex.epsilon
          The epsilon value for each dimension;
protected  DoubleDistance[] DiSHPreferenceVectorIndex.Factory.epsilon
          The epsilon value for each dimension;
protected  DoubleDistance[] DiSHPreferenceVectorIndex.Factory.Parameterizer.epsilon
          The epsilon value for each dimension;
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type DoubleDistance
DiSHPreferenceVectorIndex.Factory(DoubleDistance[] epsilon, int minpts, DiSHPreferenceVectorIndex.Strategy strategy)
          Constructor.
DiSHPreferenceVectorIndex(Relation<V> relation, DoubleDistance[] epsilon, int minpts, DiSHPreferenceVectorIndex.Strategy strategy)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return DoubleDistance
 DoubleDistance DoubleDistanceRStarTreeKNNQuery.getDistanceFactory()
           
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return types with arguments of type DoubleDistance
protected  List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object, double epsilon)
          Perform the actual query process.
 List<List<DistanceResultPair<DoubleDistance>>> DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with parameters of type DoubleDistance
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Method parameters in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with type arguments of type DoubleDistance
protected  void DoubleDistanceRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node, Map<DBID,KNNHeap<DoubleDistance>> knnLists)
          Performs a batch knn query.
protected  void DoubleDistanceRStarTreeKNNQuery.doKNNQuery(O object, KNNHeap<DoubleDistance> knnList)
          Performs a k-nearest neighbor query for the given NumberVector with the given parameter k and the according distance function.
 void DoubleDistanceRStarTreeKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<DoubleDistance>> heaps)
           
 

Constructor parameters in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with type arguments of type DoubleDistance
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?> tree, DistanceQuery<O,DoubleDistance> distanceQuery, SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
          Constructor.
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?> tree, DistanceQuery<O,DoubleDistance> distanceQuery, SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
          Constructor.
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Fields in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with type parameters of type DoubleDistance
private  PrimitiveDistanceFunction<? super V,DoubleDistance> WeightedCovarianceMatrixBuilder.weightDistance
          Holds the distance function used for weight calculation
 

Uses of DoubleDistance in de.lmu.ifi.dbs.elki.result.optics
 

Methods in de.lmu.ifi.dbs.elki.result.optics that return DoubleDistance
 DoubleDistance DoubleDistanceClusterOrderEntry.getReachability()
          Returns the reachability distance of this entry
 

Method parameters in de.lmu.ifi.dbs.elki.result.optics with type arguments of type DoubleDistance
 int DoubleDistanceClusterOrderEntry.compareTo(ClusterOrderEntry<DoubleDistance> o)
           
 


Release 0.4.0 (2011-09-20_1324)