Uses of Interface
de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

Packages that use ModifiableDBIDs
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash Helper classes for the CASH algorithm. 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique Helper classes for the CLIQUE algorithm. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.database.ids Database object identification and ID group handling API
de.lmu.ifi.dbs.elki.database.ids.generic Database object identification and ID group handling - generic implementations
de.lmu.ifi.dbs.elki.index.preprocessed.preference Indexes storing preference vectors. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.result.optics Result classes for OPTICS. 
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering declared as ModifiableDBIDs
protected  ModifiableDBIDs SNNClustering.noise
          Holds a set of noise.
protected  ModifiableDBIDs DBSCAN.noise
          Holds a set of noise.
private  ModifiableDBIDs AbstractProjectedDBSCAN.noise
          Holds a set of noise.
private  ModifiableDBIDs OPTICS.processedIDs
          Holds a set of processed ids.
protected  ModifiableDBIDs SNNClustering.processedIDs
          Holds a set of processed ids.
protected  ModifiableDBIDs DBSCAN.processedIDs
          Holds a set of processed ids.
private  ModifiableDBIDs AbstractProjectedDBSCAN.processedIDs
          Holds a set of processed ids.
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type ModifiableDBIDs
protected  List<ModifiableDBIDs> SNNClustering.resultList
          Holds a list of clusters found.
protected  List<ModifiableDBIDs> DBSCAN.resultList
          Holds a list of clusters found.
private  List<ModifiableDBIDs> AbstractProjectedDBSCAN.resultList
          Holds a list of clusters found.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type ModifiableDBIDs
protected  List<? extends ModifiableDBIDs> KMeans.sort(List<V> means, Relation<V> database)
          Returns a list of clusters.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering with type arguments of type ModifiableDBIDs
protected  List<V> KMeans.means(List<? extends ModifiableDBIDs> clusters, List<V> means, Relation<V> database)
          Returns the mean vectors of the given clusters in the given database.
private  Cluster<DendrogramModel<D>> SLINK.root(Map<DBID,ModifiableDBIDs> cluster_ids, Map<DBID,D> cluster_distances, DataStore<DBID> pi, DataStore<D> lambda, ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier, FiniteProgress progress)
           
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as ModifiableDBIDs
(package private)  ModifiableDBIDs ORCLUS.ORCLUSCluster.objectIDs
          The ids of the objects belonging to this cluster.
private  ModifiableDBIDs CASH.processedIDs
          Holds a set of processed ids.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type ModifiableDBIDs
private  Matrix CASH.runDerivator(Relation<ParameterizationFunction> relation, int dim, CASHInterval interval, ModifiableDBIDs ids)
          Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash declared as ModifiableDBIDs
private  ModifiableDBIDs CASHInterval.ids
          Holds the ids of the objects associated with this interval.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash that return ModifiableDBIDs
 ModifiableDBIDs CASHIntervalSplit.determineIDs(DBIDs superSetIDs, HyperBoundingBox interval, double d_min, double d_max)
          Determines the ids belonging to the given interval, i.e. the parameterization functions falling within the interval.
 ModifiableDBIDs CASHInterval.getIDs()
          Returns the set of ids of the objects associated with this interval.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash with parameters of type ModifiableDBIDs
CASHInterval(double[] min, double[] max, CASHIntervalSplit split, ModifiableDBIDs ids, int maxSplitDimension, int level, double d_min, double d_max)
          Provides a unique interval represented by its id, a hyper bounding box and a set of objects ids associated with this interval.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as ModifiableDBIDs
(package private)  ModifiableDBIDs PROCLUS.PROCLUSCluster.objectIDs
          The ids of the objects belonging to this cluster.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return ModifiableDBIDs
private  ModifiableDBIDs PROCLUS.computeBadMedoids(Map<DBID,PROCLUS.PROCLUSCluster> clusters, int threshold)
          Computes the bad medoids, where the medoid of a cluster with less than the specified threshold of objects is bad.
private  ModifiableDBIDs PROCLUS.computeM_current(DBIDs m, DBIDs m_best, DBIDs m_bad, Random random)
          Computes the set of medoids in current iteration.
private  ModifiableDBIDs PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random)
          Returns a piercing set of k medoids from the specified sample set.
private  ModifiableDBIDs PROCLUS.initialSet(DBIDs sampleSet, int k, Random random)
          Returns a set of k elements from the specified sample set.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type ModifiableDBIDs
private  List<Pair<Subspace<V>,ModifiableDBIDs>> CLIQUE.determineClusters(List<CLIQUESubspace<V>> denseSubspaces)
          Determines the clusters in the specified dense subspaces.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type ModifiableDBIDs
PROCLUS.PROCLUSCluster(ModifiableDBIDs objectIDs, Set<Integer> dimensions, V centroid)
          Provides a new cluster with the specified parameters.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique declared as ModifiableDBIDs
private  ModifiableDBIDs CLIQUEUnit.ids
          The ids of the feature vectors this unit contains.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique that return types with arguments of type ModifiableDBIDs
 List<Pair<Subspace<V>,ModifiableDBIDs>> CLIQUESubspace.determineClusters()
          Determines all clusters in this subspace by performing a depth-first search algorithm to find connected dense units.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique with parameters of type ModifiableDBIDs
 void CLIQUESubspace.dfs(CLIQUEUnit<V> unit, ModifiableDBIDs cluster, CLIQUESubspace<V> model)
          Depth-first search algorithm to find connected dense units in this subspace that build a cluster.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique with parameters of type ModifiableDBIDs
CLIQUEUnit(SortedSet<Interval> intervals, ModifiableDBIDs ids)
          Creates a new k-dimensional unit for the given intervals.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that return types with arguments of type ModifiableDBIDs
private  HashMap<String,ModifiableDBIDs> ByLabelClustering.multipleAssignment(Relation<?> data)
          Assigns the objects of the database to multiple clusters according to their labels.
private  HashMap<String,ModifiableDBIDs> ByLabelClustering.singleAssignment(Relation<?> data)
          Assigns the objects of the database to single clusters according to their labels.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial with type arguments of type ModifiableDBIDs
private  void ByLabelClustering.assign(HashMap<String,ModifiableDBIDs> labelMap, String label, DBID id)
          Assigns the specified id to the labelMap according to its label
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.database.ids
 

Subinterfaces of ModifiableDBIDs in de.lmu.ifi.dbs.elki.database.ids
 interface ArrayModifiableDBIDs
          Array-oriented implementation of a modifiable DBID collection.
 interface HashSetModifiableDBIDs
          Set-oriented implementation of a modifiable DBID collection.
 interface TreeSetModifiableDBIDs
          Set-oriented implementation of a modifiable DBID collection.
 

Methods in de.lmu.ifi.dbs.elki.database.ids that return ModifiableDBIDs
static ModifiableDBIDs DBIDUtil.difference(DBIDs ids1, DBIDs ids2)
          Returns the difference of the two specified collection of IDs.
static ModifiableDBIDs DBIDUtil.ensureModifiable(DBIDs ids)
          Ensure modifiable
static ModifiableDBIDs DBIDUtil.intersection(DBIDs first, DBIDs second)
          Compute the set intersection of two sets.
static ModifiableDBIDs DBIDUtil.randomSample(DBIDs source, int k, long seed)
          Produce a random sample of the given DBIDs
static ModifiableDBIDs DBIDUtil.union(DBIDs ids1, DBIDs ids2)
          Returns the union of the two specified collection of IDs.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.database.ids.generic
 

Classes in de.lmu.ifi.dbs.elki.database.ids.generic that implement ModifiableDBIDs
 class GenericArrayModifiableDBIDs
          Array-oriented implementation of a modifiable DBID collection.
 class GenericHashSetModifiableDBIDs
          Set-oriented implementation of a modifiable DBID collection.
 class GenericTreeSetModifiableDBIDs
          Set-oriented implementation of a modifiable DBID collection.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.index.preprocessed.preference
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type ModifiableDBIDs
private  BitSet DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation, ModifiableDBIDs[] neighborIDs, StringBuffer msg)
          Determines the preference vector according to the specified neighbor ids.
private  BitSet DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation, ModifiableDBIDs[] neighborIDs, StringBuffer msg)
          Determines the preference vector with the apriori strategy.
private  BitSet DiSHPreferenceVectorIndex.determinePreferenceVectorByMaxIntersection(ModifiableDBIDs[] neighborIDs, StringBuffer msg)
          Determines the preference vector with the max intersection strategy.
private  int DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates, DBIDs set, ModifiableDBIDs result)
          Returns the index of the set having the maximum intersection set with the specified set contained in the specified map.
 

Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.preference with type arguments of type ModifiableDBIDs
private  int DiSHPreferenceVectorIndex.max(Map<Integer,ModifiableDBIDs> candidates)
          Returns the set with the maximum size contained in the specified map.
private  int DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates, DBIDs set, ModifiableDBIDs result)
          Returns the index of the set having the maximum intersection set with the specified set contained in the specified map.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type ModifiableDBIDs
private  void MkAppTree.leafEntryIDs(MkAppTreeNode<O,D> node, ModifiableDBIDs result)
          Determines the ids of the leaf entries stored in the specified subtree.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type ModifiableDBIDs
private  void MkCoPTree.doReverseKNNQuery(int k, DBID q, List<DistanceResultPair<D>> result, ModifiableDBIDs candidates)
          Performs a reverse knn query.
 

Uses of ModifiableDBIDs in de.lmu.ifi.dbs.elki.result.optics
 

Fields in de.lmu.ifi.dbs.elki.result.optics declared as ModifiableDBIDs
(package private)  ModifiableDBIDs ClusterOrderResult.dbids
          The DBIDs we are defined for
 


Release 0.4.0 (2011-09-20_1324)