|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Clustering | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. |
de.lmu.ifi.dbs.elki.evaluation.paircounting | Evaluation of clustering results via pair counting. |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
de.lmu.ifi.dbs.elki.result.textwriter.naming | Naming schemes for clusters (for output when an algorithm doesn't generate cluster names). |
de.lmu.ifi.dbs.elki.visualization | Visualization package of ELKI. |
de.lmu.ifi.dbs.elki.visualization.opticsplot | Code for drawing OPTICS plots |
de.lmu.ifi.dbs.elki.visualization.visualizers.optics | Visualizers that do work on OPTICS plots |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d | Visualizers based on 1D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Clustering | |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
Abstract superclass for projected clustering algorithms, like PROCLUS
and ORCLUS . |
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return Clustering | |
---|---|
private Clustering<Model> |
SLINK.extractClusters_erich(DBIDs ids,
DataStore<DBID> pi,
DataStore<D> lambda,
int minclusters)
Extract all clusters from the pi-lambda-representation. |
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result. |
private Clustering<DendrogramModel<D>> |
SLINK.extractClusters(DBIDs ids,
DataStore<DBID> pi,
DataStore<D> lambda,
int minclusters)
Extract all clusters from the pi-lambda-representation. |
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation)
|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering |
Clustering<Model> |
DBSCAN.run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database. |
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means |
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation)
|
Clustering<EMModel<V>> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database. |
Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type Clustering | |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC
|
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return Clustering | |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left. |
Clustering<Model> |
CASH.run(Database database,
Relation<ParameterizationFunction> relation)
Run CASH on the relation. |
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database. |
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database. |
Clustering<CorrelationModel<V>> |
ERiC.run(Relation<V> relation)
Performs the ERiC algorithm on the given database. |
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return types with arguments of type Clustering | |
---|---|
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Clustering | |
---|---|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. |
Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Clustering | |
---|---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor. |
Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as Clustering | |
---|---|
private Clustering<SubspaceModel<V>> |
SUBCLU.result
Holds the result; |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return Clustering | |
---|---|
private Clustering<SubspaceModel<V>> |
DiSH.computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order. |
Clustering<SubspaceModel<V>> |
SUBCLU.getResult()
Returns the result of the algorithm. |
Clustering<SubspaceModel<V>> |
DiSH.run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database. |
Clustering<Model> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database. |
Clustering<SubspaceModel<V>> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database. |
Clustering<SubspaceModel<V>> |
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database. |
Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that return Clustering | |
---|---|
Clustering<Model> |
ByLabelClustering.run(Database database)
|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database)
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation)
|
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation)
|
Uses of Clustering in de.lmu.ifi.dbs.elki.evaluation.paircounting |
---|
Methods in de.lmu.ifi.dbs.elki.evaluation.paircounting with type parameters of type Clustering | ||
---|---|---|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs. |
|
static
|
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs. |
|
static
|
PairCountingFMeasure.getPairGenerator(R clusters,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Get a pair generator for the given Clustering |
Uses of Clustering in de.lmu.ifi.dbs.elki.result |
---|
Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Clustering | |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result |
Uses of Clustering in de.lmu.ifi.dbs.elki.result.textwriter.naming |
---|
Fields in de.lmu.ifi.dbs.elki.result.textwriter.naming declared as Clustering | |
---|---|
private Clustering<?> |
SimpleEnumeratingScheme.clustering
Clustering this scheme is applied to. |
Constructors in de.lmu.ifi.dbs.elki.result.textwriter.naming with parameters of type Clustering | |
---|---|
SimpleEnumeratingScheme(Clustering<?> clustering)
Constructor. |
Uses of Clustering in de.lmu.ifi.dbs.elki.visualization |
---|
Methods in de.lmu.ifi.dbs.elki.visualization that return Clustering | |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering. |
Clustering<Model> |
VisualizerContext.getOrCreateDefaultClustering()
Convenience method to get the clustering to use, and fall back to a default "clustering". |
Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.opticsplot |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.opticsplot that return Clustering | ||
---|---|---|
static
|
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co,
OPTICSDistanceAdapter<D> adapter,
double epsilon)
Compute an OPTICS cut clustering |
Constructors in de.lmu.ifi.dbs.elki.visualization.opticsplot with parameters of type Clustering | |
---|---|
OPTICSColorFromClustering(ColorLibrary colors,
Clustering<?> refc)
Constructor. |
Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.optics declared as Clustering | |
---|---|
(package private) Clustering<OPTICSModel> |
OPTICSClusterVisualization.clus
Our clustering |
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.optics that return Clustering | |
---|---|
protected static Clustering<OPTICSModel> |
OPTICSClusterVisualization.findOPTICSClustering(Result result)
Find the first OPTICS clustering child of a result. |
Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d declared as Clustering | |
---|---|
private Clustering<Model> |
P1DHistogramVisualizer.clustering
The clustering we visualize |
Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d declared as Clustering | |
---|---|
(package private) Clustering<MeanModel<NV>> |
ClusterMeanVisualization.clustering
Clustering to visualize. |
private Clustering<Model> |
ClusteringVisualization.clustering
The result we visualize |
(package private) Clustering<EMModel<NV>> |
EMClusterVisualization.clustering
The result we work on |
(package private) Clustering<Model> |
ClusterConvexHullVisualization.clustering
The result we work on |
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that return Clustering | ||
---|---|---|
private static
|
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private static
|
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with parameters of type Clustering | ||
---|---|---|
private static
|
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private static
|
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private void |
BubbleVisualization.setupCSS(SVGPlot svgp,
Clustering<? extends Model> clustering)
Registers the Bubble-CSS-Class at a SVGPlot. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |