Uses of Class
de.lmu.ifi.dbs.elki.data.Clustering

Packages that use Clustering
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.evaluation.paircounting Evaluation of clustering results via pair counting. 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.result.textwriter.naming Naming schemes for clusters (for output when an algorithm doesn't generate cluster names). 
de.lmu.ifi.dbs.elki.visualization Visualization package of ELKI. 
de.lmu.ifi.dbs.elki.visualization.opticsplot Code for drawing OPTICS plots 
de.lmu.ifi.dbs.elki.visualization.visualizers.optics Visualizers that do work on OPTICS plots 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d Visualizers based on 1D projections. 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Clustering
 class AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
 class AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
 interface ClusteringAlgorithm<C extends Clustering<? extends Model>>
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return Clustering
private  Clustering<Model> SLINK.extractClusters_erich(DBIDs ids, DataStore<DBID> pi, DataStore<D> lambda, int minclusters)
          Extract all clusters from the pi-lambda-representation.
private  Clustering<OPTICSModel> OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult, Relation<?> relation, double ixi, int minpts)
          Extract clusters from a cluster order result.
private  Clustering<DendrogramModel<D>> SLINK.extractClusters(DBIDs ids, DataStore<DBID> pi, DataStore<D> lambda, int minclusters)
          Extract all clusters from the pi-lambda-representation.
 Clustering<OPTICSModel> OPTICSXi.run(Database database, Relation<?> relation)
           
 Clustering<Model> SNNClustering.run(Database database, Relation<O> relation)
          Perform SNN clustering
 Clustering<Model> DBSCAN.run(Database database, Relation<O> relation)
          Performs the DBSCAN algorithm on the given database.
 Clustering<MeanModel<V>> KMeans.run(Database database, Relation<V> relation)
          Run k-means
 Clustering<Model> AbstractProjectedDBSCAN.run(Database database, Relation<V> relation)
           
 Clustering<EMModel<V>> EM.run(Database database, Relation<V> relation)
          Performs the EM clustering algorithm on the given database.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type Clustering
protected  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.Parameterizer.algC
           
private  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.partitionAlgorithm
          Get the algorithm to run on each partition.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return Clustering
private  Clustering<Model> CASH.doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
          Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.
 Clustering<Model> CASH.run(Database database, Relation<ParameterizationFunction> relation)
          Run CASH on the relation.
 Clustering<Model> ORCLUS.run(Database database, Relation<V> relation)
          Performs the ORCLUS algorithm on the given database.
 Clustering<Model> COPAC.run(Relation<V> relation)
          Performs the COPAC algorithm on the given database.
 Clustering<CorrelationModel<V>> ERiC.run(Relation<V> relation)
          Performs the ERiC algorithm on the given database.
private  Clustering<Model> COPAC.runPartitionAlgorithm(Relation<V> relation, Map<Integer,DBIDs> partitionMap, DistanceQuery<V,D> query)
          Runs the partition algorithm and creates the result.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return types with arguments of type Clustering
 ClusteringAlgorithm<Clustering<Model>> COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
          Returns the partition algorithm.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Clustering
private  SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> ERiC.extractCorrelationClusters(Clustering<Model> copacResult, Relation<V> database, int dimensionality)
          Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.
 

Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Clustering
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction, Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm, Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
          Constructor.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace declared as Clustering
private  Clustering<SubspaceModel<V>> SUBCLU.result
          Holds the result;
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return Clustering
private  Clustering<SubspaceModel<V>> DiSH.computeClusters(Relation<V> database, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder, DiSHDistanceFunction.Instance<V> distFunc)
          Computes the hierarchical clusters according to the cluster order.
 Clustering<SubspaceModel<V>> SUBCLU.getResult()
          Returns the result of the algorithm.
 Clustering<SubspaceModel<V>> DiSH.run(Database database, Relation<V> relation)
          Performs the DiSH algorithm on the given database.
 Clustering<Model> PROCLUS.run(Database database, Relation<V> relation)
          Performs the PROCLUS algorithm on the given database.
 Clustering<SubspaceModel<V>> SUBCLU.run(Relation<V> relation)
          Performs the SUBCLU algorithm on the given database.
 Clustering<SubspaceModel<V>> CLIQUE.run(Relation<V> relation)
          Performs the CLIQUE algorithm on the given database.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that return Clustering
 Clustering<Model> ByLabelClustering.run(Database database)
           
 Clustering<Model> ByLabelHierarchicalClustering.run(Database database)
           
 Clustering<Model> TrivialAllNoise.run(Relation<?> relation)
           
 Clustering<Model> ByLabelClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> ByLabelHierarchicalClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> TrivialAllInOne.run(Relation<?> relation)
           
 

Uses of Clustering in de.lmu.ifi.dbs.elki.evaluation.paircounting
 

Methods in de.lmu.ifi.dbs.elki.evaluation.paircounting with type parameters of type Clustering
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
Triple<Integer,Integer,Integer>
PairCountingFMeasure.countPairs(R result1, S result2)
          Compare two sets of generated pairs.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
Triple<Integer,Integer,Integer>
PairCountingFMeasure.countPairs(R result1, S result2)
          Compare two sets of generated pairs.
static
<R extends Clustering<M>,M extends Model>
PairSortedGeneratorInterface
PairCountingFMeasure.getPairGenerator(R clusters, boolean noiseSpecial, boolean hierarchicalSpecial)
          Get a pair generator for the given Clustering
 

Uses of Clustering in de.lmu.ifi.dbs.elki.result
 

Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Clustering
static List<Clustering<? extends Model>> ResultUtil.getClusteringResults(Result r)
          Collect all clustering results from a Result
 

Uses of Clustering in de.lmu.ifi.dbs.elki.result.textwriter.naming
 

Fields in de.lmu.ifi.dbs.elki.result.textwriter.naming declared as Clustering
private  Clustering<?> SimpleEnumeratingScheme.clustering
          Clustering this scheme is applied to.
 

Constructors in de.lmu.ifi.dbs.elki.result.textwriter.naming with parameters of type Clustering
SimpleEnumeratingScheme(Clustering<?> clustering)
          Constructor.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.visualization
 

Methods in de.lmu.ifi.dbs.elki.visualization that return Clustering
private  Clustering<Model> VisualizerContext.generateDefaultClustering()
          Generate a default (fallback) clustering.
 Clustering<Model> VisualizerContext.getOrCreateDefaultClustering()
          Convenience method to get the clustering to use, and fall back to a default "clustering".
 

Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.opticsplot
 

Methods in de.lmu.ifi.dbs.elki.visualization.opticsplot that return Clustering
static
<D extends Distance<D>>
Clustering<Model>
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co, OPTICSDistanceAdapter<D> adapter, double epsilon)
          Compute an OPTICS cut clustering
 

Constructors in de.lmu.ifi.dbs.elki.visualization.opticsplot with parameters of type Clustering
OPTICSColorFromClustering(ColorLibrary colors, Clustering<?> refc)
          Constructor.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.optics
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.optics declared as Clustering
(package private)  Clustering<OPTICSModel> OPTICSClusterVisualization.clus
          Our clustering
 

Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.optics that return Clustering
protected static Clustering<OPTICSModel> OPTICSClusterVisualization.findOPTICSClustering(Result result)
          Find the first OPTICS clustering child of a result.
 

Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d declared as Clustering
private  Clustering<Model> P1DHistogramVisualizer.clustering
          The clustering we visualize
 

Uses of Clustering in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d declared as Clustering
(package private)  Clustering<MeanModel<NV>> ClusterMeanVisualization.clustering
          Clustering to visualize.
private  Clustering<Model> ClusteringVisualization.clustering
          The result we visualize
(package private)  Clustering<EMModel<NV>> EMClusterVisualization.clustering
          The result we work on
(package private)  Clustering<Model> ClusterConvexHullVisualization.clustering
          The result we work on
 

Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that return Clustering
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
 

Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with parameters of type Clustering
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
private  void BubbleVisualization.setupCSS(SVGPlot svgp, Clustering<? extends Model> clustering)
          Registers the Bubble-CSS-Class at a SVGPlot.
 


Release 0.4.0 (2011-09-20_1324)