Uses of Package
de.lmu.ifi.dbs.elki.algorithm.clustering

Packages that use de.lmu.ifi.dbs.elki.algorithm.clustering
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.evaluation.paircounting Evaluation of clustering results via pair counting. 
de.lmu.ifi.dbs.elki.visualization.visualizers.optics Visualizers that do work on OPTICS plots 
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.algorithm.clustering
ClusteringAlgorithm
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
DBSCAN
          DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
DeLiClu
          DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database.
DeLiClu.SpatialObjectPair
          Encapsulates an entry in the cluster order.
EM
          Provides the EM algorithm (clustering by expectation maximization).
KMeans
          Provides the k-means algorithm.
OPTICS
          OPTICS provides the OPTICS algorithm.
OPTICSTypeAlgorithm
          Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc.
OPTICSXi
          Class to handle OPTICS Xi extraction.
OPTICSXi.SteepArea
          Data structure to represent a steep-down-area for the xi method.
OPTICSXi.SteepDownArea
          Data structure to represent a steep-down-area for the xi method.
SLINK
          Efficient implementation of the Single-Link Algorithm SLINK of R.
SNNClustering
           Shared nearest neighbor clustering.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
AbstractProjectedClustering
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
AbstractProjectedClustering.Parameterizer
          Parameterization class.
AbstractProjectedDBSCAN
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
AbstractProjectedDBSCAN.Parameterizer
          Parameterization class.
ClusteringAlgorithm
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
OPTICS
          OPTICS provides the OPTICS algorithm.
OPTICSTypeAlgorithm
          Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
AbstractProjectedClustering
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
AbstractProjectedClustering.Parameterizer
          Parameterization class.
AbstractProjectedDBSCAN
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
AbstractProjectedDBSCAN.Parameterizer
          Parameterization class.
ClusteringAlgorithm
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
OPTICS
          OPTICS provides the OPTICS algorithm.
OPTICSTypeAlgorithm
          Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
ClusteringAlgorithm
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.algorithm.outlier
EM
          Provides the EM algorithm (clustering by expectation maximization).
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.evaluation.paircounting
ClusteringAlgorithm
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering used by de.lmu.ifi.dbs.elki.visualization.visualizers.optics
OPTICSXi.SteepAreaResult
          Result containing the chi-steep areas.
 


Release 0.4.0 (2011-09-20_1324)