Uses of Interface
de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm

Packages that use ClusteringAlgorithm
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.evaluation.paircounting Evaluation of clustering results via pair counting. 
 

Uses of ClusteringAlgorithm in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering that implement ClusteringAlgorithm
 class AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
 class AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
 class DBSCAN<O,D extends Distance<D>>
          DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
 class EM<V extends NumberVector<V,?>>
          Provides the EM algorithm (clustering by expectation maximization).
 class KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the k-means algorithm.
 class OPTICSXi<N extends NumberDistance<N,?>>
          Class to handle OPTICS Xi extraction.
 class SNNClustering<O>
           Shared nearest neighbor clustering.
 

Uses of ClusteringAlgorithm in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that implement ClusteringAlgorithm
 class CASH
          Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform.
 class COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.
 class ERiC<V extends NumberVector<V,?>>
          Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
 class FourC<V extends NumberVector<V,?>>
          4C identifies local subgroups of data objects sharing a uniform correlation.
 class ORCLUS<V extends NumberVector<V,?>>
          ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces.
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type ClusteringAlgorithm
protected  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.Parameterizer.algC
           
private  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.partitionAlgorithm
          Get the algorithm to run on each partition.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return ClusteringAlgorithm
 ClusteringAlgorithm<Clustering<Model>> COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
          Returns the partition algorithm.
 

Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type ClusteringAlgorithm
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction, Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm, Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
          Constructor.
 

Uses of ClusteringAlgorithm in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that implement ClusteringAlgorithm
 class CLIQUE<V extends NumberVector<V,?>>
          

Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality.

 class DiSH<V extends NumberVector<V,?>>
           Algorithm for detecting subspace hierarchies.
 class PreDeCon<V extends NumberVector<V,?>>
          

PreDeCon computes clusters of subspace preference weighted connected points.

 class PROCLUS<V extends NumberVector<V,?>>
          

Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces.

 class SUBCLU<V extends NumberVector<V,?>>
           Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces.
 

Uses of ClusteringAlgorithm in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that implement ClusteringAlgorithm
 class ByLabelClustering
          Pseudo clustering using labels.
 class ByLabelHierarchicalClustering
          Pseudo clustering using labels.
 class TrivialAllInOne
          Trivial pseudo-clustering that just considers all points to be one big cluster.
 class TrivialAllNoise
          Trivial pseudo-clustering that just considers all points to be noise.
 

Uses of ClusteringAlgorithm in de.lmu.ifi.dbs.elki.evaluation.paircounting
 

Fields in de.lmu.ifi.dbs.elki.evaluation.paircounting declared as ClusteringAlgorithm
private  ClusteringAlgorithm<?> EvaluatePairCountingFMeasure.referencealg
          Reference algorithm.
protected  ClusteringAlgorithm<?> EvaluatePairCountingFMeasure.Parameterizer.referencealg
           
 

Constructors in de.lmu.ifi.dbs.elki.evaluation.paircounting with parameters of type ClusteringAlgorithm
EvaluatePairCountingFMeasure(ClusteringAlgorithm<?> referencealg, boolean noiseSpecialHandling)
          Constructor.
 


Release 0.4.0 (2011-09-20_1324)