Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

E

e - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
Derived model parameters: e and e squared.
e - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
Arrays for internal storage of eigenvalues.
e - Variable in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
The (n x 1) - double[] holding the estimated residuals (e1, ..., en)^T.
e - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.AttributeModifier
Provides the attribute to be modified.
EARLY_EXAGGERATION - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.TSNE
Early exaggeration factor.
EARLY_EXAGGERATION_ITERATIONS - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.TSNE
Number of iterations to apply early exaggeration.
EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
Earth radius approximation in m.
EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
Earth radius approximation in m.
EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
Earth radius approximation in m.
EarthModel - Interface in de.lmu.ifi.dbs.elki.math.geodesy
API for handling different earth models.
ecefToLatDeg(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLatDeg(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding latitude.
ecefToLatLngDegHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLatLngDegHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding latitude, longitude and height.
ecefToLatLngRadHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLatLngRadHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding latitude, longitude and height.
ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLatRad(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding latitude.
ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
 
ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
 
ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
 
ecefToLngDeg(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLngDeg(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding longitude.
ecefToLngRad(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
 
ecefToLngRad(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
Convert a 3D coordinate pair to the corresponding longitude.
Eclat - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
Eclat is a depth-first discovery algorithm for mining frequent itemsets.
Eclat(double, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
Constructor.
Eclat.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
Parameterization class.
Edge(int, int) - Constructor for class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout.Edge
Constructor.
edgelength(double[][], int[], int) - Static method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split.MSTSplit
Length of edge i.
edges - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout
Edges
edit - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
Edit-Distance measures
EDIT_CLEAR - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
 
EDIT_FIND - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
 
EDIT_REDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
 
EDIT_UNDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
 
EditDistance - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
Edit distance measures.
EditDistance(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
 
editDistanceFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Get the editing distance to transform second clustering to first clustering (normalized, 0 = unequal)
editDistanceSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Get the editing distance to transform second clustering to first clustering (normalized, 0 = unequal)
editFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Edit operations for first clustering to second clustering.
editOperationsBaseline - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Baseline for edit operations
editOperationsBaseline() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Get the baseline editing Operations ( = total Objects)
editOperationsFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Get the editing operations required to transform first clustering to second clustering
editOperationsSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Get the editing operations required to transform second clustering to first clustering
editSecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
Edit operations for second clustering to first clustering.
EDRDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
Edit Distance on Real Sequence distance for numerical vectors.
EDRDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
Constructor.
EDRDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
Parameterization class.
effectiveBandSize(int, int) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
Compute the effective band size.
EigenPair - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
Helper class which encapsulates an eigenvector and its corresponding eigenvalue.
EigenPair(double[], double) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
Creates a new EigenPair object.
EIGENPAIR_FILTER_ABSOLUTE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Parameterizer
"absolute" Flag
EIGENPAIR_FILTER_DELTA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Parameterizer
Parameter delta
EIGENPAIR_FILTER_N - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.FirstNEigenPairFilter.Parameterizer
Parameter n
EIGENPAIR_FILTER_PALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.ProgressiveEigenPairFilter.Parameterizer
Parameter progressive alpha.
EIGENPAIR_FILTER_RALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.RelativeEigenPairFilter.Parameterizer
Parameter relative alpha.
EIGENPAIR_FILTER_WALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.WeakEigenPairFilter.Parameterizer
EigenPairFilter - Interface in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors and their corresponding eigenvalues) which are a result of a Variance Analysis Algorithm, e.g.
eigenPairs - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
The eigenpairs in decreasing order.
eigenvalue - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
The corresponding eigenvalue.
EigenvalueDecomposition - Class in de.lmu.ifi.dbs.elki.math.linearalgebra
Eigenvalues and eigenvectors of a real matrix.
EigenvalueDecomposition(double[][]) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
Check for symmetry, then construct the eigenvalue decomposition
eigenvalues - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
The eigenvalues in decreasing order.
eigenvector - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
The eigenvector as a matrix.
eigenvectors - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
The eigenvectors in decreasing order to their corresponding eigenvalues.
element - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
Our element node.
elementCoordinatesFromEvent(Element, Event) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPlot
Convert screen coordinates to element coordinates.
elementCoordinatesFromEvent(Document, Element, Event) - Static method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGUtil
Convert the coordinates of an DOM Event from screen into element coordinates.
elementLine - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
The line element
elementPoint - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
The drag handle element
elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Centroid
Vector elements.
elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
The covariance matrix.
elems - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
All elements, in insertion order (and will not fail badly if concurrent insertions happen).
elemText - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
The label element
ELKIBuilder<T> - Class in de.lmu.ifi.dbs.elki.utilities
Builder utility class.
ELKIBuilder(Class<? super T>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIBuilder
Constructor.
ELKILauncher - Class in de.lmu.ifi.dbs.elki.application
Class to launch ELKI.
ELKILauncher() - Constructor for class de.lmu.ifi.dbs.elki.application.ELKILauncher
Private constructor.
ELKILogRecord - Class in de.lmu.ifi.dbs.elki.logging
Base LogRecord class used in ELKI.
ELKILogRecord(Level, CharSequence) - Constructor for class de.lmu.ifi.dbs.elki.logging.ELKILogRecord
Constructor.
ELKIServiceLoader - Class in de.lmu.ifi.dbs.elki.utilities
Class that emulates the behavior of an java ServiceLoader, except that the classes are not automatically instantiated.
ELKIServiceLoader() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceLoader
Constructor - do not use.
ELKIServiceRegistry - Class in de.lmu.ifi.dbs.elki.utilities
Registry of available implementations in ELKI.
ELKIServiceRegistry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry
Do not use constructor.
ELKIServiceRegistry.Entry - Class in de.lmu.ifi.dbs.elki.utilities
Entry in the service registry.
ELKIServiceScanner - Class in de.lmu.ifi.dbs.elki.utilities
A collection of inspection-related utility functions.
ELKIServiceScanner() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceScanner
Static methods only.
ELKIServiceScanner.DirClassIterator - Class in de.lmu.ifi.dbs.elki.utilities
Class to iterate over a directory tree.
ellipsoidVincentyFormulaDeg(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
Compute the approximate great-circle distance of two points.
ellipsoidVincentyFormulaRad(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
Compute the approximate great-circle distance of two points.
ellipticalArc(double, double, double, double, double, double, double) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
Elliptical arc curve to the given coordinates.
ellipticalArc(double, double, double, double, double, double[]) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
Elliptical arc curve to the given coordinates.
ellipticalArc(double[], double, double, double, double[]) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
Elliptical arc curve to the given coordinates.
EM<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian Mixture Modeling (GMM), with optional MAP regularization.
EM(int, double, EMClusterModelFactory<V, M>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
Constructor.
EM(int, double, EMClusterModelFactory<V, M>, int, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
Constructor.
EM(int, double, EMClusterModelFactory<V, M>, int, double, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
Constructor.
em - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier.Parameterizer
EM clustering algorithm to run.
EM.Parameterizer<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
Parameterization class.
EM_DELTA_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
Threshold when to stop EM iterations.
embedOrThumbnail(int, PlotItem, VisualizationTask, Element) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.OverviewPlot
Produce thumbnail for a visualizer.
EMBLEM_IMPORTANT - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
 
EMBORDER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
Generic tags to indicate the type of element.
emClustering - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
Inner algorithm.
EMClusterModel<M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
Models useable in EM clustering.
EMClusterModelFactory<V extends NumberVector,M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
Factory for initializing the EM models.
EMClusterVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation.
EMClusterVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization
Constructor
EMClusterVisualization.Instance - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
Instance.
emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C
Threshold when to stop EM iterations.
emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
Threshold when to stop EM iterations.
EMGOlivierNorbergEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Naive distribution estimation using mean and sample variance.
EMGOlivierNorbergEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
Private constructor, use static instance!
EMGOlivierNorbergEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
EMModel - Class in de.lmu.ifi.dbs.elki.data.model
Cluster model of an EM cluster, providing a mean and a full covariance Matrix.
EMModel(double[], double[][]) - Constructor for class de.lmu.ifi.dbs.elki.data.model.EMModel
Constructor.
EMOutlier<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
Outlier detection algorithm using EM Clustering.
EMOutlier(EM<V, ?>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
Constructor with an existing em clustering algorithm.
EMOutlier.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
Parameterization class.
EMPTY - Static variable in class de.lmu.ifi.dbs.elki.datasource.parser.ArffParser
Empty line pattern.
EMPTY - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.Rec
Empty list.
empty() - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.EmptyIterator
Get an empty hierarchy iterator.
EMPTY_ALIASES - Static variable in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
Reusable empty array.
EMPTY_ARRAY - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseMinMaxNormalization
Empty double array.
EMPTY_CHILDREN - Static variable in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
Constant for leaf nodes.
EMPTY_DISTS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDArrayList
Empty.
EMPTY_ENUMERATION - Variable in class de.lmu.ifi.dbs.elki.index.tree.BreadthFirstEnumeration
Represents an empty enumeration.
EMPTY_IDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDArrayList
Empty.
EMPTY_INTS - Static variable in class de.lmu.ifi.dbs.elki.math.MathUtil
Empty integer array.
EMPTY_ITERATOR - Static variable in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
Empty DBID iterator.
EMPTY_LABELS - Static variable in class de.lmu.ifi.dbs.elki.data.LabelList
Empty label list.
EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
Indicates an empty page.
EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
Indicates an empty page.
EMPTY_STRING - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.ParseUtil
Preallocated exceptions.
EMPTY_VECTOR - Static variable in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
Empty constant vector returned when no subspace was used.
EmptyDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
Pseudo database that is empty.
EmptyDatabaseConnection() - Constructor for class de.lmu.ifi.dbs.elki.datasource.EmptyDatabaseConnection
Constructor.
EmptyDataException - Exception in de.lmu.ifi.dbs.elki.utilities.exceptions
Exception thrown when a database / relation is empty.
EmptyDataException() - Constructor for exception de.lmu.ifi.dbs.elki.utilities.exceptions.EmptyDataException
Constructor.
EmptyDBIDIterator() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
 
EMPTYDBIDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Final, global copy of empty DBIDs.
EmptyDBIDs - Class in de.lmu.ifi.dbs.elki.database.ids
Empty DBID collection.
EmptyDBIDs() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
Constructor.
EmptyDBIDs.EmptyDBIDIterator - Class in de.lmu.ifi.dbs.elki.database.ids
Iterator for empty DBIDs-
EmptyIterator<O> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.iterator
Empty object iterator.
EmptyIterator() - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.EmptyIterator
Private constructor, use static EmptyIterator.empty() instead.
emptyPages - Variable in class de.lmu.ifi.dbs.elki.persistent.AbstractStoringPageFile
A stack holding the empty page ids.
emptyPagesSize - Variable in class de.lmu.ifi.dbs.elki.index.tree.TreeIndexHeader
The number of bytes additionally needed for the listing of empty pages of the headed page file.
EmptyParameterization - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization
Parameterization handler that only allows the use of default values.
EmptyParameterization() - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.EmptyParameterization
 
enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuAction
Indicate if the menu option is enabled or greyed out.
enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuToggle
Indicate if the menu option is enabled or greyed out.
enabled() - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.actions.ClusterStyleAction.SetStyleAction
 
enableExport(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
Enable / disable the export menu.
enableOverview(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
Enable / disable the overview menu.
enableStart() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
Enable capturing of 'mousedown' events.
enableStop() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
Enable capturing of 'mousemove' and 'mouseup' events.
ENABLEVIS_ID - Static variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer.Parameterizer
Parameter to enable visualizers
enableVisualizers - Variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer.Parameterizer
Pattern to enable visualizers
enableWriter(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
Enable / disable the writer menu.
encoder - Variable in class de.lmu.ifi.dbs.elki.utilities.io.ByteArrayUtil.StringSerializer
Encoder.
end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs.Slice
Slice positions.
end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Slice
Slice positions.
end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDSubList
End offset.
end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDPair.Slice
Slice positions.
end() - Method in interface de.lmu.ifi.dbs.elki.logging.statistics.Duration
Finish the timer.
end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
Tracking variables.
end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
 
end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
Tracking variables.
end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
 
end - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelExecutor.BlockArrayRunner
End position
end - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.range.ExponentialIntGenerator
End value.
end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.LineReader
Current position, and length of buffer
end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.Tokenizer
Current positions of result and iterator.
END_VALUE - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.IterableIt
End sentinel value.
endcg - Variable in class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
Normalization term E[NDCG].
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in interface de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea.DragListener
Method called when a drag was ended.
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
Method called when a drag was ended.
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization.Instance
 
endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization.Instance
 
endindex - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.SteepArea
End index of steep area
endIndex - Variable in class de.lmu.ifi.dbs.elki.data.model.OPTICSModel
End index
endsWith(CharSequence, CharSequence) - Static method in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Similar to String.endsWith(String) but for buffers.
endvec - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.util.Arcball1DOFAdapter
Ending point of drag.
enlargement(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
Compute the enlargement obtained by adding an object to an existing object.
enlargementScaled(SpatialComparable, SpatialComparable, double) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
Compute the enlargement obtained by adding an object to an existing object.
EnsembleEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality
Ensemble estimator taking the median of three of our best estimators.
EnsembleEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
 
EnsembleVoting - Interface in de.lmu.ifi.dbs.elki.utilities.ensemble
Interface for ensemble voting rules
EnsembleVotingInverseMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Inverse multiplicative voting: \( 1-\prod_i(1-s_i) \)
EnsembleVotingInverseMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingInverseMultiplicative
Constructor.
EnsembleVotingInverseMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Parameterization class.
EnsembleVotingMax - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Simple combination rule, by taking the maximum.
EnsembleVotingMax() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMax
Constructor.
EnsembleVotingMean - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Simple combination rule, by taking the mean
EnsembleVotingMean() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMean
Constructor.
EnsembleVotingMedian - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Simple combination rule, by taking the median.
EnsembleVotingMedian(double) - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMedian
Constructor.
EnsembleVotingMedian.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Parameterization class.
EnsembleVotingMin - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Simple combination rule, by taking the minimum.
EnsembleVotingMin() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMin
Constructor.
EnsembleVotingMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Inverse multiplicative voting: \( \prod_i s_i \)
EnsembleVotingMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMultiplicative
Constructor.
EnsembleVotingMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
Parameterization class.
ensureArray(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Ensure that the given DBIDs are array-indexable.
ensureBuffer(int, ByteBuffer, WritableByteChannel) - Method in class de.lmu.ifi.dbs.elki.datasource.bundle.BundleWriter
Ensure the buffer is large enough.
ensureClusteringResult(Database, Result) - Static method in class de.lmu.ifi.dbs.elki.evaluation.AutomaticEvaluation
Ensure that the result contains at least one Clustering.
ensureCompleted(FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Increment a progress (unless null).
ensureCompleted(Logging) - Method in class de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress
Ensure that the progress was completed, to make progress bars disappear
ensureModifiable(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Ensure modifiable.
ensureSelectionResult(Database) - Static method in class de.lmu.ifi.dbs.elki.result.SelectionResult
Ensure that there also is a selection container object.
ensureSet(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Ensure that the given DBIDs support fast "contains" operations.
ensureSize() - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
Ensure we have enough storage.
ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs
Resize as desired.
ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.persistent.OnDiskArray
Ensure that the file can fit the given number of records.
entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.AbstractNode
The entries (children) of this node.
entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split.TopologicalSplitter.Split
The entries we process.
entropy - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
Entropy-based measures
Entropy - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
Entropy based measures.
Entropy(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Constructor.
entropyConditionalFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the conditional entropy of the first clustering.
entropyConditionalSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the conditional entropy of the first clustering.
entropyFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Entropy in first
entropyFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the entropy of the first clustering using Log_2.
entropyJoint - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Joint entropy
entropyJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the joint entropy of both clusterings (not normalized, 0 = equal)
entropyMutualInformation() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the mutual information (not normalized, 0 = equal)
entropyNMIJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the joint-normalized mutual information (normalized, 0 = unequal)
entropyNMIMax() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the max-normalized mutual information (normalized, 0 = unequal)
entropyNMIMin() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the min-normalized mutual information (normalized, 0 = unequal)
entropyNMISqrt() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the sqrt-normalized mutual information (normalized, 0 = unequal)
entropyNMISum() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the sum-normalized mutual information (normalized, 0 = unequal)
entropyPowers() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get Powers entropy (normalized, 0 = equal) Powers = 1 - NMI_Sum
entropySecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Entropy in second
entropySecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the entropy of the second clustering using Log_2.
Entry - Interface in de.lmu.ifi.dbs.elki.index.tree
Defines the requirements for an entry in an index structure.
entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
The entry of this component.
entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split.distribution.DistanceEntry
The entry of the Index.
entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery.DoubleDistanceEntry
Referenced entry
Entry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
 
entry1 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
The first entry of this pair.
entry2 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
The second entry of this pair.
entrySet() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.RectangleArranger
The items contained in the map.
enumClass - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
Reference to the actual enum type, for T.valueOf().
EnumParameter<E extends java.lang.Enum<E>> - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters
Parameter class for a parameter specifying an enum type.
EnumParameter(OptionID, Class<E>, E) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
Constructs an enum parameter with the given optionID, constraints and default value.
EnumParameter(OptionID, Class<E>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
Constructs an enum parameter with the given optionID, constraints and default value.
EnumParameter(OptionID, Class<E>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
Constructs an enum parameter with the given optionID, constraints and default value.
EnumParameterConfigurator - Class in de.lmu.ifi.dbs.elki.gui.configurator
Panel to configure EnumParameters by offering a dropdown to choose from.
EnumParameterConfigurator(EnumParameter<?>, JComponent) - Constructor for class de.lmu.ifi.dbs.elki.gui.configurator.EnumParameterConfigurator
 
EpanechnikovKernelDensityFunction - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
Epanechnikov kernel density estimator.
EpanechnikovKernelDensityFunction() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
Private, empty constructor.
EpanechnikovKernelDensityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
Parameterization stub.
eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES
The epsilon (in 2d) parameter
eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.Parameterizer
Query radius
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.COPAC.Settings
Epsilon value for GDBSCAN.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.FourC.Settings
Query radius epsilon.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
Holds the epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
Holds the epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate
Range to query with.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate.Parameterizer
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Instance
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Parameterizer
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Instance
Range to query with
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Parameterizer
Minimum similarity threshold
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN
Holds the epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Instance
Holds the epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Parameterizer
Holds the epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS
Holds the maximum distance to search for objects (performance parameter)
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
Epsilon radius.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
Epsilon radius threshold.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
 
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
Holds the value of DiSH.Parameterizer.EPSILON_ID.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
 
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PreDeCon.Settings
Query radius parameter epsilon.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU
Maximum radius of the neighborhood to be considered.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU.Parameterizer
Maximum radius of the neighborhood to be considered.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCAN.Parameterizer
Epsilon radius
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate
Epsilon radius
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
The epsilon distance a neighbor may have at most.
epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Parameterizer
Epsilon radius
epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex
The epsilon value for each dimension.
epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
The epsilon value for each dimension.
epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory.Parameterizer
The epsilon value for each dimension.
epsilon - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
The current epsilon value.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Parameterizer
Similarity threshold
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
Parameter to specify the minimum SNN density, must be an integer greater than 0.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
Parameter that specifies the maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector, must be a double equal to or greater than 0.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Parameterizer
Parameter to specify the maximum distance between two vectors with equal preference vectors before considering them as parallel, must be a double equal to or greater than 0.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU.Parameterizer
Maximum radius of the neighborhood to be considered.
EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
A comma separated list of positive doubles specifying the maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector (default is DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON in each dimension).
EpsilonNeighborPredicate<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
The default DBSCAN and OPTICS neighbor predicate, using an epsilon-neighborhood.
EpsilonNeighborPredicate(double, DistanceFunction<? super O>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
Full constructor.
EpsilonNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Instance for a particular data set.
EpsilonNeighborPredicate.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Parameterization class
epsilons - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.KernelDensityEstimator
Epsilon values for different subspace dimensionalities
epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.COPACNeighborPredicate
Squared value of epsilon.
epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
The epsilon distance a neighbor may have at most.
equal(DBIDRef, DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Compare two DBIDs, for equality testing.
equal(DBIDRef, DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Test two DBIDs for equality.
equal(DBIDRef, DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
equal(long, long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Test two bitsets for equality
equal(long[], long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Test two bitsets for equality
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.CASHInterval
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
equals is used in updating the heap!
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeapEntry
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.DenseItemset
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Itemset
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.OneItemset
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.SmallDenseItemset
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.Individuum
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.BitVector
Indicates whether some other object is "equal to" this BitVector.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ClassLabel
Any ClassLabel should ensure a natural ordering that is consistent with equals.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ExternalID
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.HyperBoundingBox
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.SimpleClassLabel
 
equals(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
Test two SpatialComparables for equality.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.Subspace
 
equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBID
Deprecated.
equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDRef
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Itr
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID
Deprecated.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID.Itr
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDPair
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDRange.Itr
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDVar.Itr
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.AbstractSimilarityAdapter
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ArcCosineDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ArcCosineUnitlengthDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.BrayCurtisDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CanberraDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ClarkDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.HistogramIntersectionDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsolutePearsonCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsoluteUncenteredCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.PearsonCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredPearsonCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredUncenteredCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.UncenteredCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedPearsonCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedSquaredPearsonCorrelationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CosineDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CosineUnitlengthDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedDoubleDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedFloatDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedSparseDoubleDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedSparseFloatDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.DimensionSelectingLatLngDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LatLngDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LngLatDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.HistogramMatchDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.KolmogorovSmirnovDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.MatrixWeightedQuadraticDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPIntegerNormDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPNormDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.ManhattanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MaximumDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MinimumDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedLPNormDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedSquaredEuclideanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.ChiSquaredDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.FisherRaoDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.HellingerDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.JeffreyDivergenceDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceAsymmetricDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.TriangularDiscriminationDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.TriangularDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.RandomStableDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.set.HammingDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.set.JaccardSimilarityDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.strings.LevenshteinDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.strings.NormalizedLevenshteinDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractDimensionsSelectingDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.OnedimensionalDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceEuclideanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceLPNormDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceManhattanDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceMaximumDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.LCSSDistanceFunction
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments.Segment
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.DistanceResultAdapter
Deprecated.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.FilteredDistanceResultAdapter
Deprecated.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.OutlierScoreAdapter
Deprecated.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.SimpleAdapter
Deprecated.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
Returns true if this object is the same as the o argument; false otherwise.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeDirectoryEntry
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeLeafEntry
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query.MTreeSearchCandidate
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialDirectoryEntry
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialPointLeafEntry
 
equals(double[], double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Compare for equality.
equals(double[][], double[][]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Test for equality
equals(Object) - Method in class de.lmu.ifi.dbs.elki.persistent.AbstractExternalizablePage
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleDoublePair
Trivial equals implementation
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleIntPair
Trivial equals implementation
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleObjPair
 
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntDoublePair
Trivial equals implementation
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntIntPair
Trivial equals implementation
equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.Pair
Simple equals statement.
equals(Object) - Method in class de.lmu.ifi.dbs.elki.visualization.VisualizationTask
 
equalsPlusTimes(double[], double[], double[], double) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
Compute out = x + y * a, for 2d.
equationsToString(String, int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
Returns a string representation of this equation system.
equationsToString(String, NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
Returns a string representation of this equation system.
equationsToString(NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
Returns a string representation of this equation system.
equationsToString(int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
Returns a string representation of this equation system.
erf(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Error function for Gaussian distributions = Normal distributions.
ERF_COEFF1 - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
T.
ERF_COEFF2 - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
T.
erfc(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Complementary error function for Gaussian distributions = Normal distributions.
erfcinv(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Inverse error function.
ErfcStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
Gaussian Error Function Weight function, scaled using stddev.
ErfcStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcStddevWeight
 
ErfcWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
Gaussian Error Function Weight function, scaled such that the result it 0.1 at distance == max erfc(1.1630871536766736 * distance / max) The value of 1.1630871536766736 is erfcinv(0.1), to achieve the intended scaling.
ErfcWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcWeight
 
ERiC<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
ERiC(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
Constructor.
ERiC.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
Parameterization class.
ERiC.Settings - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
Class to wrap the ERiC settings.
ERiCNeighborPredicate<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
ERiC neighborhood predicate.
ERiCNeighborPredicate(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.ERiCNeighborPredicate
Constructor.
ERiCNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Instance for a particular data set.
ERiCNeighborPredicate.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Parameterization class.
ERPDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
Edit Distance With Real Penalty distance for numerical vectors.
ERPDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
Constructor.
ERPDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
Parameterization class.
err - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
Output stream for error output.
ERR_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error message when dimensionalities do not agree.
ERR_INVALID_RANGE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error message when min > max is given as a range.
ERR_MATRIX_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error message when matrix dimensionalities do not agree.
ERR_MATRIX_INNERDIM - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error message when matrix dimensionalities do not agree.
ERR_MATRIX_NONSQUARE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error when a non-square matrix is used with determinant.
ERR_MATRIX_NOT_SPD - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
When a symmetric positive definite matrix is required.
ERR_MATRIX_RANK_DEFICIENT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.QRDecomposition
When a matrix is rank deficient.
ERR_MATRIX_RANK_DEFICIENT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
When a matrix is rank deficient.
ERR_SINGULAR - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error with a singular matrix.
ERR_TOO_LITTLE_WEIGHT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
Error message reported when too little data (weight <= 1) in matrix.
ERR_VEC_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Error message when vector dimensionalities do not agree.
errformat - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
Formatter for error messages
errformat - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
Formatter for error messages
error(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Log a message at the 'severe' level.
error(CharSequence) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Log a message at the 'severe' level.
ErrorFormatter - Class in de.lmu.ifi.dbs.elki.logging
Format a log record for error output, including a stack trace if available.
ErrorFormatter() - Constructor for class de.lmu.ifi.dbs.elki.logging.ErrorFormatter
Constructor.
errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.AbstractParameterization
Errors
errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.UnParameterization
Errors
errorsTo(Parameterization) - Method in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
Set the error target, since there is no unique way where errors can be reported.
errorTarget - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
Error target
errorVector(V) - Method in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
Returns the error vectors after projection.
errStyle - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
Error message style
esq - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
Derived model parameters: e and e squared.
est - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.BestFitEstimator.BestFit
Best estimator.
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.DistributionEstimator
General form of the parameter estimation
estimate(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.DistributionEstimator
General form of the parameter estimation
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaChoiWetteEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.InverseGaussianMLEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMLEEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LMMDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLevenbergMarquardtKDEEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MADDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.BestFitEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.TrimmedEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.WinsorizingEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MOMDistributionEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLevenbergMarquardtKDEEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMLEEstimator
 
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
 
estimate(double, double, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
Estimate from simple characteristics.
estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
 
estimate(DoubleMinMax) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
Estimate parameters from minimum and maximum observed.
estimate(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
Estimate parameters from minimum and maximum observed.
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AggregatedHillEstimator
 
estimate(KNNQuery<?>, DBIDRef, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
 
estimate(RangeQuery<?>, DBIDRef, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.GEDEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.HillEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a distance list.
estimate(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a distance list.
estimate(double[], int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a distance list.
estimate(A, NumberArrayAdapter<?, ? super A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a distance list.
estimate(KNNQuery<?>, DBIDRef, int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a Reference Point, a KNNQuery and the neighborhood size k.
estimate(RangeQuery<?>, DBIDRef, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
Estimate from a distance list.
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.LMomentsEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.MOMEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWM2Estimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWMEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.RVEstimator
 
estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ZipfEstimator
 
estimateDensities(Relation<O>, KNNQuery<O>, DBIDs, WritableDataStore<double[]>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.KDEOS
Perform the kernel density estimation step.
estimateEigenvalue(double[][], double[]) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.transform.FastMultidimensionalScalingTransform
Estimate the (singed!)
estimateFromExpMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedLogisticAlternateLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedParetoLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceLMMEstimator
 
estimateFromLMoments(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LMMDistributionEstimator
Estimate from the L-Moments.
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalBilkovaLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.SkewGNormalLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformLMMEstimator
 
estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLMMEstimator
 
estimateFromLogMeanVariance(MeanVariance, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
Estimate the distribution from mean and variance.
estimateFromLogMeanVariance(MeanVariance, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMOMEstimator
 
estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogLogisticMADEstimator
 
estimateFromLogMedianMAD(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
General form of the parameter estimation
estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMADEstimator
 
estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLogMADEstimator
 
estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaLogMOMEstimator
 
estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
 
estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
General form of the parameter estimation
estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
 
estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaMOMEstimator
 
estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.InverseGaussianMOMEstimator
 
estimateFromMeanVariance(MeanVariance) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
Estimate the distribution from mean and variance.
estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMOMEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.CauchyMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticMADEstimator
 
estimateFromMedianMAD(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MADDistributionEstimator
General form of the parameter estimation
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMADEstimator
 
estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMADEstimator
 
estimateFromStatisticalMoments(StatisticalMoments) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
 
estimateFromStatisticalMoments(StatisticalMoments) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
 
estimateFromStatisticalMoments(StatisticalMoments) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MOMDistributionEstimator
General form of the parameter estimation
estimateID(DBIDRef, DoubleDBIDListIter, double[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS
Estimate the local intrinsic dimensionality.
estimateInitialBeta(DBIDRef, DoubleDBIDListIter, double) - Static method in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.SOS
Estimate beta from the distances in a row.
estimateInitialBeta(double[], double) - Static method in class de.lmu.ifi.dbs.elki.algorithm.projection.PerplexityAffinityMatrixBuilder
Estimate beta from the distances in a row.
EstimateIntrinsicDimensionality<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Estimate global average intrinsic dimensionality of a data set.
EstimateIntrinsicDimensionality(DistanceFunction<? super O>, IntrinsicDimensionalityEstimator, double, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
Constructor.
EstimateIntrinsicDimensionality.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Parameterization class.
estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.DiagonalGaussianModel
 
estimateLogDensity(NumberVector) - Method in interface de.lmu.ifi.dbs.elki.algorithm.clustering.em.EMClusterModel
Estimate the log likelihood of a vector.
estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.MultivariateGaussianModel
 
estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.SphericalGaussianModel
 
estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.TextbookMultivariateGaussianModel
 
estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.TwoPassMultivariateGaussianModel
 
estimateThreshold(CFTree.TreeNode) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.CFTree
 
estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.AffineProjection
 
estimateViewport() - Method in interface de.lmu.ifi.dbs.elki.visualization.projections.Projection2D
Estimate the viewport requirements
estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.Simple2D
 
estimateY(double[][]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
Perform an estimation of y on the specified matrix.
estimateY(double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.PolynomialRegression
Performs an estimation of y on the specified x value.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS
Estimator for intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS.Parameterizer
Estimator for intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier
Estimator for intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier.Parameterizer
Estimator for intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS
Estimator of intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS.Parameterizer
Estimator of intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder
Estimator of intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Parameterizer
Estimator of intrinsic dimensionality.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
Estimation method.
estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
Estimation method.
ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS.Parameterizer
The class used for estimating the intrinsic dimensionality.
ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier.Parameterizer
Class to use for estimating the ID.
ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS.Parameterizer
Parameter for ID estimation.
ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Parameterizer
Parameter for ID estimation.
ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
Estimation method
estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseBetaNormalization.Parameterizer
Stores the distribution estimators
estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization
Stores the distribution estimators
estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization.Parameterizer
Stores the distribution estimators
EU - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
Euler-Mascheroni constant.
EUCLIDEAN_KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.svg.SVGHyperSphere
Factor used for approximating circles with cubic beziers.
EuclideanDistanceCriterion - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch
Distance criterion.
EuclideanDistanceCriterion() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.EuclideanDistanceCriterion
 
EuclideanDistanceCriterion.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch
Parameterization class
EuclideanDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
Euclidean distance for NumberVectors.
EuclideanDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
Deprecated.
Use static instance!
EuclideanDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
Parameterization class.
EuclideanHashFunctionFamily - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
2-stable hash function family for Euclidean distances.
EuclideanHashFunctionFamily(RandomFactory, double, int) - Constructor for class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.EuclideanHashFunctionFamily
Constructor.
EuclideanHashFunctionFamily.Parameterizer - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
Parameterization class.
euclideanLength(double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Euclidean length of the vector sqrt(v1T v1).
EuclideanRStarTreeKNNQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
Instance of a KNN query for a particular spatial index.
EuclideanRStarTreeKNNQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
Constructor.
EuclideanRStarTreeRangeQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
Instance of a range query for a particular spatial index.
EuclideanRStarTreeRangeQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeRangeQuery
Constructor.
EULERS_CONST - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
Euler–Mascheroni constant
eval(double, double[]) - Method in interface de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.FittingFunction
Compute value at position x as well as gradients for the parameters
eval(double, double[]) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.GaussianFittingFunction
Compute the mixture of Gaussians at the given position
evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
The data input configured
evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
Algorithm step to run on.
evalTab - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.MultiStepGUI
Evaluation panel.
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.DCGEvaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.NDCGEvaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
 
evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
Evaluate a given predicate and iterator.
evaluate(DBIDs, DoubleDBIDList) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
Evaluate given a list of positives and a scoring.
evaluateBy(ScoreEvaluation) - Method in class de.lmu.ifi.dbs.elki.result.outlier.OutlierResult
Evaluate given a set of positives and a scoring.
EvaluateCIndex<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the C-index of a data set.
EvaluateCIndex(DistanceFunction<? super O>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
Constructor.
EvaluateCIndex.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateClustering - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
Evaluate a clustering result by comparing it to an existing cluster label.
EvaluateClustering(ClusteringAlgorithm<?>, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
Constructor.
evaluateClustering(Database, Relation<? extends O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
Evaluate a single clustering.
evaluateClustering(Database, Relation<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDBCV
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
Evaluate a single clustering.
evaluateClustering(Database, Relation<O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
Evaluate a single clustering.
evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
Evaluate a single clustering.
EvaluateClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
Parameterization class.
EvaluateClustering.ScoreResult - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
Result object for outlier score judgements.
evaluateClusters(ArrayList<PROCLUS.PROCLUSCluster>, long[][], Relation<V>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PROCLUS
Evaluates the quality of the clusters.
EvaluateConcordantPairs<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the Gamma Criterion of a data set.
EvaluateConcordantPairs(PrimitiveDistanceFunction<? super NumberVector>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
Constructor.
EvaluateConcordantPairs.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateDaviesBouldin - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the Davies-Bouldin index of a data set.
EvaluateDaviesBouldin(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
Constructor.
EvaluateDaviesBouldin.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateDBCV<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the Density-Based Clustering Validation Index.
EvaluateDBCV(DistanceFunction<? super O>) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDBCV
Constructor.
EvaluateDBCV.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateIntrinsicDimensionalityEstimators - Class in de.lmu.ifi.dbs.elki.application.experiments
Class for testing the estimation quality of intrinsic dimensionality estimators.
EvaluateIntrinsicDimensionalityEstimators(int, int, int, int, EvaluateIntrinsicDimensionalityEstimators.Aggregate, EvaluateIntrinsicDimensionalityEstimators.OutputFormat, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.application.experiments.EvaluateIntrinsicDimensionalityEstimators
Constructor.
EvaluateIntrinsicDimensionalityEstimators.Aggregate - Enum in de.lmu.ifi.dbs.elki.application.experiments
Aggregation methods.
EvaluateIntrinsicDimensionalityEstimators.OutputFormat - Enum in de.lmu.ifi.dbs.elki.application.experiments
Output format
EvaluateIntrinsicDimensionalityEstimators.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.experiments
Parameterization class.
evaluateKNN(double[], ModifiableDoubleDBIDList, Relation<?>, Object2IntOpenHashMap<Object>, Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance.KNNEvaluator
Evaluate by simulating kNN classification for k=1...maxk
evaluateOrderingResult(int, SetDBIDs, DBIDs) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
 
evaluateOutlierResult(Database, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.ComputeOutlierHistogram
Evaluate a single outlier result as histogram.
evaluateOutlierResult(int, SetDBIDs, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
 
EvaluatePBMIndex - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the PBM index of a clustering Reference: M.
EvaluatePBMIndex(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
Constructor.
EvaluatePBMIndex.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluatePrecomputedOutlierScores - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
Class to load an outlier detection summary file, as produced by ComputeKNNOutlierScores, and compute popular evaluation metrics for it.
EvaluatePrecomputedOutlierScores(File, StreamingParser, Pattern, File, String) - Constructor for class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
Constructor.
EvaluatePrecomputedOutlierScores.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
Parameterization class.
evaluateRanking(ScoreEvaluation, Cluster<?>, DoubleDBIDList) - Static method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
Evaluate given a cluster (of positive elements) and a scoring list.
EvaluateRankingQuality<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Evaluate a distance function with respect to kNN queries.
EvaluateRankingQuality(DistanceFunction<? super V>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality
Constructor.
EvaluateRankingQuality.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Parameterization class.
EvaluateRetrievalPerformance<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Evaluate a distance functions performance by computing the mean average precision, ROC, and NN classification performance when ranking the objects by distance.
EvaluateRetrievalPerformance(DistanceFunction<? super O>, double, RandomFactory, boolean, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance
Constructor.
EvaluateRetrievalPerformance.KNNEvaluator - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Evaluate kNN retrieval performance.
EvaluateRetrievalPerformance.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Parameterization class.
EvaluateRetrievalPerformance.RetrievalPerformanceResult - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
Result object for MAP scores.
EvaluateSilhouette<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the silhouette of a data set.
EvaluateSilhouette(DistanceFunction<? super O>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
Constructor.
EvaluateSilhouette(DistanceFunction<? super O>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
Constructor.
EvaluateSilhouette.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateSimplifiedSilhouette - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the simplified silhouette of a data set.
EvaluateSimplifiedSilhouette(NumberVectorDistanceFunction<?>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
Constructor.
EvaluateSimplifiedSilhouette.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateSquaredErrors - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Evaluate a clustering by reporting the squared errors (SSE, SSQ), as used by k-means.
EvaluateSquaredErrors(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
Constructor.
EvaluateSquaredErrors.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
EvaluateVarianceRatioCriteria<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Compute the Variance Ratio Criteria of a data set, also known as Calinski-Harabasz index.
EvaluateVarianceRatioCriteria(NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
Constructor.
EvaluateVarianceRatioCriteria.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Parameterization class.
Evaluation(ResultHierarchy, List<? extends Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
Constructor.
evaluationName - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.ConfusionMatrixEvaluationResult
Holds the used EvaluationProcedure.
EvaluationResult - Class in de.lmu.ifi.dbs.elki.result
Abstract evaluation result.
EvaluationResult(String, String) - Constructor for class de.lmu.ifi.dbs.elki.result.EvaluationResult
Constructor.
EvaluationResult.Measurement - Class in de.lmu.ifi.dbs.elki.result
Class representing a single measurement.
EvaluationResult.MeasurementGroup - Class in de.lmu.ifi.dbs.elki.result
A group of evaluation measurements.
evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask
The evaluation step.
evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
 
EvaluationStep - Class in de.lmu.ifi.dbs.elki.workflow
The "evaluation" step, where data is analyzed.
EvaluationStep(List<? extends Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
Constructor.
EvaluationStep.Evaluation - Class in de.lmu.ifi.dbs.elki.workflow
Class to handle running the evaluators on a database instance.
EvaluationStep.Parameterizer - Class in de.lmu.ifi.dbs.elki.workflow
Parameterization class.
EvaluationTabPanel - Class in de.lmu.ifi.dbs.elki.gui.multistep.panels
Panel to handle result evaluation
EvaluationTabPanel(InputTabPanel, AlgorithmTabPanel) - Constructor for class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
Constructor.
EvaluationVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
Pseudo-Visualizer, that lists the cluster evaluation results found.
EvaluationVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.EvaluationVisualization
Constructor.
Evaluator - Interface in de.lmu.ifi.dbs.elki.evaluation
Interface for post-algorithm evaluations, such as histograms, outlier score evaluations, ...
EVALUATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
Parameter ID to specify the evaluators to run.
evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
Evaluators to run.
evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
Evaluators to run.
evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
Evaluators to run
evaluteResult(Database, Clustering<?>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
Evaluate a clustering result.
Event() - Constructor for enum de.lmu.ifi.dbs.elki.datasource.bundle.BundleStreamSource.Event
 
eventarea - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
Sensitive (clickable) area
eventManager - Variable in class de.lmu.ifi.dbs.elki.database.AbstractDatabase
The event manager, collects events and fires them on demand.
EvolutionarySearch(Relation<V>, ArrayList<ArrayList<DBIDs>>, int, Random) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.EvolutionarySearch
Constructor.
EVT_DBLCLICK_DELAY - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer.Instance.SegmentListenerProxy
Mouse double click time window in milliseconds
ewma - Variable in class de.lmu.ifi.dbs.elki.algorithm.timeseries.SigniTrendChangeDetection.Instance
Moving average and variance.
ewmv - Variable in class de.lmu.ifi.dbs.elki.algorithm.timeseries.SigniTrendChangeDetection.Instance
Moving average and variance.
exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
Compute exactly (slower).
exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
Exactness flag.
EXACT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
Flag to compute exact value range for binning.
exactMinMax(Relation<O>, DistanceQuery<O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
Compute the exact maximum and minimum.
exception(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Log a message with exception at the 'severe' level.
exception(Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Log an exception at the 'severe' level.
exception(Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
Static version to log a severe exception.
exception(String, Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
Static version to log a severe exception.
excessOfMass() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction.TempCluster
Excess of mass measure.
excludeNotCovered(ModifiableDoubleDBIDList, double, ModifiableDoubleDBIDList) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
Retain all elements within the current cover.
execute() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
Execute the task.
executed - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
Signal when an database input has been executed.
executeResize(double) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.LazyCanvasResizer
Callback function that needs to be overridden with actual implementations.
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.AlgorithmTabPanel
 
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
 
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
 
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.LoggingTabPanel
 
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
 
executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
Execute the configured step.
Executor - Interface in de.lmu.ifi.dbs.elki.parallel
Processor executor.
executor - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelCore
Executor service.
existed - Variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
Whether or not the file originally existed
existed - Variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
Whether we are initializing from an existing file.
existing - Variable in class de.lmu.ifi.dbs.elki.data.ClassLabel.Factory
Set for reusing the same objects.
existing - Variable in class de.lmu.ifi.dbs.elki.database.relation.ConvertToStringView
The database we use
exp(double) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Delegate to FastMath.exp.
exp - Variable in class de.lmu.ifi.dbs.elki.result.EvaluationResult.Measurement
Observed value, minimum, maximum, expected value.
expandCluster(Relation<O>, RangeQuery<O>, DBIDRef, ArrayModifiableDBIDs, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
DBSCAN-function expandCluster.
expandCluster(DBIDRef, int, WritableIntegerDataStore, T, ArrayModifiableDBIDs, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Instance
Set-based expand cluster implementation.
expandCluster(int, WritableIntegerDataStore, KNNQuery<O>, DBIDs, double, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.LSDBC
Set-based expand cluster implementation.
expandCluster(DBIDRef, int, WritableIntegerDataStore, ModifiableDoubleDBIDList, ArrayModifiableDBIDs, RangeQuery<V>, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Instance
Set-based expand cluster implementation.
expandCluster(SimilarityQuery<O>, DBIDRef, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
DBSCAN-function expandCluster adapted to SNN criterion.
expandClusterOrder(DBID, ClusterOrder, DistanceQuery<V>, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.FastOPTICS
OPTICS algorithm for processing a point, but with different density estimates
expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeap.Instance
OPTICS-function expandClusterOrder.
expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSList.Instance
OPTICS-function expandClusterOrder.
expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO.Instance
 
expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.GeneralizedOPTICS.Instance
Add the current DBID to the cluster order, and expand its neighbors if minPts and similar conditions are satisfied.
expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Instance
 
expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Instance
 
expandDirNodes(SpatialPrimitiveDistanceFunction<V>, DeLiCluNode, DeLiCluNode) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
Expands the specified directory nodes.
expanded - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTree
Holds the ids of the expanded nodes.
expandLeafNodes(SpatialPrimitiveDistanceFunction<V>, DeLiCluNode, DeLiCluNode, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
Expands the specified leaf nodes.
expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
 
expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery
 
expandNodes(DeLiCluTree, SpatialPrimitiveDistanceFunction<V>, DeLiClu.SpatialObjectPair, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
Expands the spatial nodes of the specified pair.
expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
Constant expansion rate. 2 would be the intuitive value, but the original version used 1.3, so we copy this.
expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory
Constant expansion rate. 2 would be the intuitive value, but the original version used 1.3, so we copy this.
expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
Expansion rate.
EXPANSION_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
Expansion rate of the tree (going upward).
expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP
Expected amount of outliers.
expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
Expected amount of outliers.
expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier
Expected share of outliers.
expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
Expected share of outliers
EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
Expected share of outliers.
EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
Expected share of outliers
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
 
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.DCGEvaluation
 
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
 
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.NDCGEvaluation
 
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
 
expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
 
expected(int, int) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
Expected score for a random result.
ExpGammaDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Exp-Gamma Distribution, with random generation and density functions.
ExpGammaDistribution(double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
Constructor for Gamma distribution.
ExpGammaDistribution(double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
Constructor for Gamma distribution.
ExpGammaDistribution(double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
Constructor for Gamma distribution.
ExpGammaDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Parameterization class
ExpGammaExpMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Simple parameter estimation for the ExpGamma distribution.
ExpGammaExpMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
Private constructor.
ExpGammaExpMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
expirePage(P) - Method in class de.lmu.ifi.dbs.elki.persistent.LRUCache
Write page through to disk.
explain - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.AutotuningPCA.Cand
Score
explainedVariance - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
The amount of Variance explained by strong Eigenvalues
EXPONENT_OVERFLOW - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.ParseUtil
Preallocated exceptions.
ExponentialDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Exponential distribution.
ExponentialDistribution(double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
Constructor.
ExponentialDistribution(double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
Constructor.
ExponentialDistribution(double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
Constructor.
ExponentialDistribution(double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
Constructor.
ExponentialDistribution(double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
Constructor.
ExponentialDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Parameterization class
ExponentialIntGenerator - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.range
Generate an exponential range.
ExponentialIntGenerator(int, int, int) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.range.ExponentialIntGenerator
Constructor.
ExponentialLMMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).
ExponentialLMMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
Constructor.
ExponentialLMMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
ExponentiallyModifiedGaussianDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution) is a combination of a normal distribution and an exponential distribution.
ExponentiallyModifiedGaussianDistribution(double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
Constructor for ExGaussian distribution
ExponentiallyModifiedGaussianDistribution(double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
Constructor for ExGaussian distribution
ExponentiallyModifiedGaussianDistribution(double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
Constructor for ExGaussian distribution
ExponentiallyModifiedGaussianDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Parameterization class
ExponentialMADEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimate Exponential distribution parameters using Median and MAD.
ExponentialMADEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
Private constructor, use static instance!
ExponentialMADEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
ExponentialMedianEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimate Exponential distribution parameters using Median and MAD.
ExponentialMedianEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
Private constructor, use static instance!
ExponentialMedianEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
ExponentialMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimate Exponential distribution parameters using the mean, which is the maximum-likelihood estimate (MLE), but not very robust.
ExponentialMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
Private constructor, use static instance!
ExponentialMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
ExponentialStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
Exponential Weight function, scaled such that the result it 0.1 at distance == max stddev * exp(-.5 * distance/stddev) This is similar to the Gaussian weight function, except distance/stddev is not squared.
ExponentialStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialStddevWeight
 
ExponentialWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
Exponential Weight function, scaled such that the result it 0.1 at distance == max exp(-2.3025850929940455 * distance/max) This is similar to the Gaussian weight function, except distance/max is not squared
ExponentialWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialWeight
 
EXPONENTS_ID - Static variable in class tutorial.distancefunction.MultiLPNorm.Parameterizer
Option ID for the exponents
exportItem - Variable in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
The "Export Image" button, to save the image
ExportVisualizations - Class in de.lmu.ifi.dbs.elki.result
Class that automatically generates all visualizations and exports them into SVG files.
ExportVisualizations(File, VisualizerParameterizer, double, ExportVisualizations.Format) - Constructor for class de.lmu.ifi.dbs.elki.result.ExportVisualizations
Constructor.
ExportVisualizations(File, VisualizerParameterizer, double, ExportVisualizations.Format, int) - Constructor for class de.lmu.ifi.dbs.elki.result.ExportVisualizations
Constructor.
ExportVisualizations.Format - Enum in de.lmu.ifi.dbs.elki.result
File format
ExportVisualizations.Parameterizer - Class in de.lmu.ifi.dbs.elki.result
Parameterization class
extend(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.data.ModifiableHyperBoundingBox
Extend the bounding box by some other spatial object.
extend(A, ArrayAdapter<T, A>, T) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
Static wrapper that has a nicer generics signature.
ExtendedArray<T> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
Class to extend an array with a single element virtually.
ExtendedArray(Object, ArrayAdapter<T, Object>, T) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
Constructor.
ExtendedNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Neighborhood obtained by computing the k-fold closure of an existing neighborhood.
ExtendedNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood
Constructor.
ExtendedNeighborhood.Factory<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Factory class.
ExtendedNeighborhood.Factory.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Parameterization class.
extendMBR(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialDirectoryEntry
Extend the MBR of this node.
extendNeighborhood(Database, Relation<? extends O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood.Factory
Method to load the external neighbors.
EXTENSION - Static variable in class de.lmu.ifi.dbs.elki.result.textwriter.MultipleFilesOutput
File name extension.
ExternalClustering - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
Read an external clustering result from a file, such as produced by ClusteringVectorDumper.
ExternalClustering(File) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.meta.ExternalClustering
Constructor.
ExternalClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
Parameterization class
ExternalDoubleOutlierScore - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
External outlier detection scores, loading outlier scores from an external file.
ExternalDoubleOutlierScore(File, Pattern, Pattern, boolean, ScalingFunction) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.ExternalDoubleOutlierScore
Constructor.
ExternalDoubleOutlierScore.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
Parameterization class
ExternalID - Class in de.lmu.ifi.dbs.elki.data
External ID objects.
ExternalID(String) - Constructor for class de.lmu.ifi.dbs.elki.data.ExternalID
Constructor.
EXTERNALID - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
External ID type.
EXTERNALID_INDEX_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
Parameter that specifies the index of the label to be used as external Id, starting at 0.
ExternalIDFilter - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
Class that turns a label column into an external ID column.
ExternalIDFilter(int) - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
Constructor.
ExternalIDFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
Parameterization class.
externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
The index of the label to be used as external Id.
externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
 
ExternalIDJoinDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
Joins multiple data sources by their label
ExternalIDJoinDatabaseConnection(List<ObjectFilter>, List<DatabaseConnection>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.ExternalIDJoinDatabaseConnection
Constructor.
ExternalIDJoinDatabaseConnection.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource
Parameterization class.
ExternalizablePage - Interface in de.lmu.ifi.dbs.elki.persistent
Base interface for externalizable pages.
ExternalNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
A precomputed neighborhood, loaded from an external file.
ExternalNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExternalNeighborhood
Constructor.
ExternalNeighborhood.Factory - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Factory class.
ExternalNeighborhood.Factory.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Parameterization class.
extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
The extra element
extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrAnc
Additional object to return as first result.
extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrDesc
Additional object to return as first result.
EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree
Debugging flag: do extra integrity checks.
EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.AbstractRStarTree
Development flag: This will enable some extra integrity checks on the tree.
extract(int, int, int, boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
Extract itemsets ending in the given item.
extract(int, int, int, int, int[], int, int[], int[], boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
Extract itemsets ending in the given item.
extractClusters() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.AbstractCutDendrogram.Instance
Extract all clusters from the pi-lambda-representation.
extractClusters(ClusterOrder, Relation<?>, double, int) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi
Extract clusters from a cluster order result.
extractClusters(Relation<V>, DiSH.DiSHClusterOrder) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
Extracts the clusters from the cluster order.
extractCorrelationClusters(Clustering<Model>, Relation<V>, int, ERiCNeighborPredicate<V>.Instance) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.
extractItemsets(DBIDs[], int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
 
extractItemsets(DBIDs, DBIDs[], int[], int, int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
 
extractLinear(int, int, int, int, int[], int, int[], FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
Extract itemsets from a linear tree.
extremum_alpha_n(int, double[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
Determines the value for alpha_n where this function has a (local) extremum.
extremumType - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
Holds the type of the global extremum.
extremumType(int, double[], HyperBoundingBox) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
Returns the type of the extremum at the specified alpha values.
ExtremumType() - Constructor for enum de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction.ExtremumType
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links
ELKI version 0.7.5

Copyright © 2019 ELKI Development Team. License information.