- e - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- e - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
-
Arrays for internal storage of eigenvalues.
- e - Variable in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
-
The (n x 1) - double[] holding the estimated residuals (e1, ..., en)^T.
- e - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.AttributeModifier
-
Provides the attribute to be modified.
- EARLY_EXAGGERATION - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.TSNE
-
Early exaggeration factor.
- EARLY_EXAGGERATION_ITERATIONS - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.TSNE
-
Number of iterations to apply early exaggeration.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
-
Earth radius approximation in m.
- EarthModel - Interface in de.lmu.ifi.dbs.elki.math.geodesy
-
API for handling different earth models.
- ecefToLatDeg(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatDeg(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatLngDegHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatLngDegHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and
height.
- ecefToLatLngRadHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatLngRadHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and
height.
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatRad(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
-
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
-
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
-
- ecefToLngDeg(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLngDeg(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- ecefToLngRad(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLngRad(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- Eclat - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
-
Eclat is a depth-first discovery algorithm for mining frequent itemsets.
- Eclat(double, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
Constructor.
- Eclat.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
-
Parameterization class.
- Edge(int, int) - Constructor for class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout.Edge
-
Constructor.
- edgelength(double[][], int[], int) - Static method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split.MSTSplit
-
Length of edge i.
- edges - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout
-
Edges
- edit - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
-
Edit-Distance measures
- EDIT_CLEAR - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_FIND - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_REDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_UNDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EditDistance - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Edit distance measures.
- EditDistance(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
- editDistanceFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first
clustering (normalized, 0 = unequal)
- editDistanceSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first
clustering (normalized, 0 = unequal)
- editFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Edit operations for first clustering to second clustering.
- editOperationsBaseline - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Baseline for edit operations
- editOperationsBaseline() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the baseline editing Operations ( = total Objects)
- editOperationsFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform first clustering to
second clustering
- editOperationsSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform second clustering to
first clustering
- editSecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Edit operations for second clustering to first clustering.
- EDRDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Edit Distance on Real Sequence distance for numerical vectors.
- EDRDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
-
Constructor.
- EDRDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Parameterization class.
- effectiveBandSize(int, int) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
-
Compute the effective band size.
- EigenPair - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
-
Helper class which encapsulates an eigenvector and its corresponding
eigenvalue.
- EigenPair(double[], double) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
-
Creates a new EigenPair object.
- EIGENPAIR_FILTER_ABSOLUTE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Parameterizer
-
"absolute" Flag
- EIGENPAIR_FILTER_DELTA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.LimitEigenPairFilter.Parameterizer
-
Parameter delta
- EIGENPAIR_FILTER_N - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.FirstNEigenPairFilter.Parameterizer
-
Parameter n
- EIGENPAIR_FILTER_PALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.ProgressiveEigenPairFilter.Parameterizer
-
Parameter progressive alpha.
- EIGENPAIR_FILTER_RALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.RelativeEigenPairFilter.Parameterizer
-
Parameter relative alpha.
- EIGENPAIR_FILTER_WALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.WeakEigenPairFilter.Parameterizer
-
- EigenPairFilter - Interface in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter
-
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors and
their corresponding eigenvalues) which are a result of a Variance Analysis
Algorithm, e.g.
- eigenPairs - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenpairs in decreasing order.
- eigenvalue - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
-
The corresponding eigenvalue.
- EigenvalueDecomposition - Class in de.lmu.ifi.dbs.elki.math.linearalgebra
-
Eigenvalues and eigenvectors of a real matrix.
- EigenvalueDecomposition(double[][]) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
-
Check for symmetry, then construct the eigenvalue decomposition
- eigenvalues - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenvalues in decreasing order.
- eigenvector - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.EigenPair
-
The eigenvector as a matrix.
- eigenvectors - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenvectors in decreasing order to their corresponding eigenvalues.
- element - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Our element node.
- elementCoordinatesFromEvent(Element, Event) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPlot
-
Convert screen coordinates to element coordinates.
- elementCoordinatesFromEvent(Document, Element, Event) - Static method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGUtil
-
Convert the coordinates of an DOM Event from screen into element
coordinates.
- elementLine - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The line element
- elementPoint - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The drag handle element
- elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Centroid
-
Vector elements.
- elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
-
The covariance matrix.
- elems - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
-
All elements, in insertion order (and will not fail badly if concurrent
insertions happen).
- elemText - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The label element
- ELKIBuilder<T> - Class in de.lmu.ifi.dbs.elki.utilities
-
Builder utility class.
- ELKIBuilder(Class<? super T>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIBuilder
-
Constructor.
- ELKILauncher - Class in de.lmu.ifi.dbs.elki.application
-
Class to launch ELKI.
- ELKILauncher() - Constructor for class de.lmu.ifi.dbs.elki.application.ELKILauncher
-
Private constructor.
- ELKILogRecord - Class in de.lmu.ifi.dbs.elki.logging
-
Base LogRecord
class used in ELKI.
- ELKILogRecord(Level, CharSequence) - Constructor for class de.lmu.ifi.dbs.elki.logging.ELKILogRecord
-
Constructor.
- ELKIServiceLoader - Class in de.lmu.ifi.dbs.elki.utilities
-
Class that emulates the behavior of an java ServiceLoader, except that the
classes are not automatically instantiated.
- ELKIServiceLoader() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceLoader
-
Constructor - do not use.
- ELKIServiceRegistry - Class in de.lmu.ifi.dbs.elki.utilities
-
Registry of available implementations in ELKI.
- ELKIServiceRegistry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry
-
Do not use constructor.
- ELKIServiceRegistry.Entry - Class in de.lmu.ifi.dbs.elki.utilities
-
Entry in the service registry.
- ELKIServiceScanner - Class in de.lmu.ifi.dbs.elki.utilities
-
A collection of inspection-related utility functions.
- ELKIServiceScanner() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceScanner
-
Static methods only.
- ELKIServiceScanner.DirClassIterator - Class in de.lmu.ifi.dbs.elki.utilities
-
Class to iterate over a directory tree.
- ellipsoidVincentyFormulaDeg(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipsoidVincentyFormulaRad(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipticalArc(double, double, double, double, double, double, double) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(double, double, double, double, double, double[]) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(double[], double, double, double, double[]) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- EM<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM), with optional MAP regularization.
- EM(int, double, EMClusterModelFactory<V, M>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
-
Constructor.
- EM(int, double, EMClusterModelFactory<V, M>, int, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
-
Constructor.
- EM(int, double, EMClusterModelFactory<V, M>, int, double, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
-
Constructor.
- em - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier.Parameterizer
-
EM clustering algorithm to run.
- EM.Parameterizer<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Parameterization class.
- EM_DELTA_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
-
Threshold when to stop EM iterations.
- embedOrThumbnail(int, PlotItem, VisualizationTask, Element) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.OverviewPlot
-
Produce thumbnail for a visualizer.
- EMBLEM_IMPORTANT - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EMBORDER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Generic tags to indicate the type of element.
- emClustering - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
-
Inner algorithm.
- EMClusterModel<M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Models useable in EM clustering.
- EMClusterModelFactory<V extends NumberVector,M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Factory for initializing the EM models.
- EMClusterVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
-
Visualizer for generating SVG-Elements containing ellipses for first, second
and third standard deviation.
- EMClusterVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization
-
Constructor
- EMClusterVisualization.Instance - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
-
Instance.
- emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C
-
Threshold when to stop EM iterations.
- emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
-
Threshold when to stop EM iterations.
- EMGOlivierNorbergEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Naive distribution estimation using mean and sample variance.
- EMGOlivierNorbergEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
-
Private constructor, use static instance!
- EMGOlivierNorbergEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- EMModel - Class in de.lmu.ifi.dbs.elki.data.model
-
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
- EMModel(double[], double[][]) - Constructor for class de.lmu.ifi.dbs.elki.data.model.EMModel
-
Constructor.
- EMOutlier<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
-
Outlier detection algorithm using EM Clustering.
- EMOutlier(EM<V, ?>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
-
Constructor with an existing em clustering algorithm.
- EMOutlier.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
-
Parameterization class.
- EMPTY - Static variable in class de.lmu.ifi.dbs.elki.datasource.parser.ArffParser
-
Empty line pattern.
- EMPTY - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.Rec
-
Empty list.
- empty() - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.EmptyIterator
-
Get an empty hierarchy iterator.
- EMPTY_ALIASES - Static variable in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
-
Reusable empty array.
- EMPTY_ARRAY - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseMinMaxNormalization
-
Empty double array.
- EMPTY_CHILDREN - Static variable in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
-
Constant for leaf nodes.
- EMPTY_DISTS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDArrayList
-
Empty.
- EMPTY_ENUMERATION - Variable in class de.lmu.ifi.dbs.elki.index.tree.BreadthFirstEnumeration
-
Represents an empty enumeration.
- EMPTY_IDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDArrayList
-
Empty.
- EMPTY_INTS - Static variable in class de.lmu.ifi.dbs.elki.math.MathUtil
-
Empty integer array.
- EMPTY_ITERATOR - Static variable in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
-
Empty DBID iterator.
- EMPTY_LABELS - Static variable in class de.lmu.ifi.dbs.elki.data.LabelList
-
Empty label list.
- EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
-
Indicates an empty page.
- EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
-
Indicates an empty page.
- EMPTY_STRING - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.ParseUtil
-
Preallocated exceptions.
- EMPTY_VECTOR - Static variable in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
-
Empty constant vector returned when no subspace was used.
- EmptyDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
-
Pseudo database that is empty.
- EmptyDatabaseConnection() - Constructor for class de.lmu.ifi.dbs.elki.datasource.EmptyDatabaseConnection
-
Constructor.
- EmptyDataException - Exception in de.lmu.ifi.dbs.elki.utilities.exceptions
-
Exception thrown when a database / relation is empty.
- EmptyDataException() - Constructor for exception de.lmu.ifi.dbs.elki.utilities.exceptions.EmptyDataException
-
Constructor.
- EmptyDBIDIterator() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
-
- EMPTYDBIDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Final, global copy of empty DBIDs.
- EmptyDBIDs - Class in de.lmu.ifi.dbs.elki.database.ids
-
Empty DBID collection.
- EmptyDBIDs() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
-
Constructor.
- EmptyDBIDs.EmptyDBIDIterator - Class in de.lmu.ifi.dbs.elki.database.ids
-
Iterator for empty DBIDs-
- EmptyIterator<O> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.iterator
-
Empty object iterator.
- EmptyIterator() - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.EmptyIterator
-
- emptyPages - Variable in class de.lmu.ifi.dbs.elki.persistent.AbstractStoringPageFile
-
A stack holding the empty page ids.
- emptyPagesSize - Variable in class de.lmu.ifi.dbs.elki.index.tree.TreeIndexHeader
-
The number of bytes additionally needed for the listing of empty pages of
the headed page file.
- EmptyParameterization - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization
-
Parameterization handler that only allows the use of default values.
- EmptyParameterization() - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.EmptyParameterization
-
- enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuAction
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuToggle
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.actions.ClusterStyleAction.SetStyleAction
-
- enableExport(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the export menu.
- enableOverview(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the overview menu.
- enableStart() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousedown' events.
- enableStop() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousemove' and 'mouseup' events.
- ENABLEVIS_ID - Static variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer.Parameterizer
-
Parameter to enable visualizers
- enableVisualizers - Variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer.Parameterizer
-
Pattern to enable visualizers
- enableWriter(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the writer menu.
- encoder - Variable in class de.lmu.ifi.dbs.elki.utilities.io.ByteArrayUtil.StringSerializer
-
Encoder.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs.Slice
-
Slice positions.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Slice
-
Slice positions.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDSubList
-
End offset.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDPair.Slice
-
Slice positions.
- end() - Method in interface de.lmu.ifi.dbs.elki.logging.statistics.Duration
-
Finish the timer.
- end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
-
Tracking variables.
- end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
-
- end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
-
Tracking variables.
- end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
-
- end - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelExecutor.BlockArrayRunner
-
End position
- end - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.range.ExponentialIntGenerator
-
End value.
- end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.LineReader
-
Current position, and length of buffer
- end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.Tokenizer
-
Current positions of result and iterator.
- END_VALUE - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.iterator.IterableIt
-
End sentinel value.
- endcg - Variable in class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Normalization term E[NDCG].
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in interface de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea.DragListener
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization.Instance
-
- endindex - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.SteepArea
-
End index of steep area
- endIndex - Variable in class de.lmu.ifi.dbs.elki.data.model.OPTICSModel
-
End index
- endsWith(CharSequence, CharSequence) - Static method in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
-
Similar to String.endsWith(String)
but for buffers.
- endvec - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.util.Arcball1DOFAdapter
-
Ending point of drag.
- enlargement(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Compute the enlargement obtained by adding an object to an existing object.
- enlargementScaled(SpatialComparable, SpatialComparable, double) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Compute the enlargement obtained by adding an object to an existing object.
- EnsembleEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality
-
Ensemble estimator taking the median of three of our best estimators.
- EnsembleEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
-
- EnsembleVoting - Interface in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Interface for ensemble voting rules
- EnsembleVotingInverseMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Inverse multiplicative voting:
\( 1-\prod_i(1-s_i) \)
- EnsembleVotingInverseMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingInverseMultiplicative
-
Constructor.
- EnsembleVotingInverseMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMax - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the maximum.
- EnsembleVotingMax() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMax
-
Constructor.
- EnsembleVotingMean - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the mean
- EnsembleVotingMean() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMean
-
Constructor.
- EnsembleVotingMedian - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the median.
- EnsembleVotingMedian(double) - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMedian
-
Constructor.
- EnsembleVotingMedian.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMin - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the minimum.
- EnsembleVotingMin() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMin
-
Constructor.
- EnsembleVotingMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Inverse multiplicative voting:
\( \prod_i s_i \)
- EnsembleVotingMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMultiplicative
-
Constructor.
- EnsembleVotingMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- ensureArray(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs are array-indexable.
- ensureBuffer(int, ByteBuffer, WritableByteChannel) - Method in class de.lmu.ifi.dbs.elki.datasource.bundle.BundleWriter
-
Ensure the buffer is large enough.
- ensureClusteringResult(Database, Result) - Static method in class de.lmu.ifi.dbs.elki.evaluation.AutomaticEvaluation
-
Ensure that the result contains at least one Clustering.
- ensureCompleted(FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Increment a progress (unless null
).
- ensureCompleted(Logging) - Method in class de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress
-
Ensure that the progress was completed, to make progress bars disappear
- ensureModifiable(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure modifiable.
- ensureSelectionResult(Database) - Static method in class de.lmu.ifi.dbs.elki.result.SelectionResult
-
Ensure that there also is a selection container object.
- ensureSet(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs support fast "contains" operations.
- ensureSize() - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
-
Ensure we have enough storage.
- ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs
-
Resize as desired.
- ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.persistent.OnDiskArray
-
Ensure that the file can fit the given number of records.
- entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.AbstractNode
-
The entries (children) of this node.
- entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split.TopologicalSplitter.Split
-
The entries we process.
- entropy - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
-
Entropy-based measures
- Entropy - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Entropy based measures.
- Entropy(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Constructor.
- entropyConditionalFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the conditional entropy of the first clustering.
- entropyConditionalSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the conditional entropy of the first clustering.
- entropyFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Entropy in first
- entropyFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the entropy of the first clustering using Log_2.
- entropyJoint - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Joint entropy
- entropyJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the joint entropy of both clusterings (not normalized, 0 = equal)
- entropyMutualInformation() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the mutual information (not normalized, 0 = equal)
- entropyNMIJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the joint-normalized mutual information (normalized, 0 = unequal)
- entropyNMIMax() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the max-normalized mutual information (normalized, 0 = unequal)
- entropyNMIMin() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the min-normalized mutual information (normalized, 0 = unequal)
- entropyNMISqrt() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the sqrt-normalized mutual information (normalized, 0 = unequal)
- entropyNMISum() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the sum-normalized mutual information (normalized, 0 = unequal)
- entropyPowers() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get Powers entropy (normalized, 0 = equal) Powers = 1 - NMI_Sum
- entropySecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Entropy in second
- entropySecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the entropy of the second clustering using Log_2.
- Entry - Interface in de.lmu.ifi.dbs.elki.index.tree
-
Defines the requirements for an entry in an index structure.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
-
The entry of this component.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split.distribution.DistanceEntry
-
The entry of the Index.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery.DoubleDistanceEntry
-
Referenced entry
- Entry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
-
- entry1 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
The first entry of this pair.
- entry2 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
The second entry of this pair.
- entrySet() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.RectangleArranger
-
The items contained in the map.
- enumClass - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Reference to the actual enum type, for T.valueOf().
- EnumParameter<E extends java.lang.Enum<E>> - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters
-
Parameter class for a parameter specifying an enum type.
- EnumParameter(OptionID, Class<E>, E) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameter(OptionID, Class<E>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameter(OptionID, Class<E>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameterConfigurator - Class in de.lmu.ifi.dbs.elki.gui.configurator
-
Panel to configure EnumParameters by offering a dropdown to choose from.
- EnumParameterConfigurator(EnumParameter<?>, JComponent) - Constructor for class de.lmu.ifi.dbs.elki.gui.configurator.EnumParameterConfigurator
-
- EpanechnikovKernelDensityFunction - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
-
Epanechnikov kernel density estimator.
- EpanechnikovKernelDensityFunction() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
-
Private, empty constructor.
- EpanechnikovKernelDensityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
-
Parameterization stub.
- eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES
-
The epsilon (in 2d) parameter
- eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.Parameterizer
-
Query radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.COPAC.Settings
-
Epsilon value for GDBSCAN.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.FourC.Settings
-
Query radius epsilon.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate
-
Range to query with.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate.Parameterizer
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Instance
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Parameterizer
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Instance
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Parameterizer
-
Minimum similarity threshold
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Instance
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Parameterizer
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS
-
Holds the maximum distance to search for objects (performance parameter)
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
-
Epsilon radius.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
-
Epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PreDeCon.Settings
-
Query radius parameter epsilon.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU
-
Maximum radius of the neighborhood to be considered.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU.Parameterizer
-
Maximum radius of the neighborhood to be considered.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCAN.Parameterizer
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Parameterizer
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory.Parameterizer
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The current epsilon value.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
-
Parameter to specify the maximum radius of the neighborhood to be
considered, must be suitable to the distance function specified.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.SimilarityNeighborPredicate.Parameterizer
-
Similarity threshold
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
-
Parameter to specify the maximum radius of the neighborhood to be
considered, must be suitable to the distance function specified.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
-
Parameter to specify the minimum SNN density, must be an integer greater
than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
-
Parameter that specifies the maximum radius of the neighborhood to be
considered in each dimension for determination of the preference vector,
must be a double equal to or greater than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Parameterizer
-
Parameter to specify the maximum distance between two vectors with equal
preference vectors before considering them as parallel, must be a double
equal to or greater than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU.Parameterizer
-
Maximum radius of the neighborhood to be considered.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
-
A comma separated list of positive doubles specifying the maximum radius
of the neighborhood to be considered in each dimension for determination
of the preference vector (default is
DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
in each
dimension).
- EpsilonNeighborPredicate<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
The default DBSCAN and OPTICS neighbor predicate, using an
epsilon-neighborhood.
- EpsilonNeighborPredicate(double, DistanceFunction<? super O>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
-
Full constructor.
- EpsilonNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Instance for a particular data set.
- EpsilonNeighborPredicate.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Parameterization class
- epsilons - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.KernelDensityEstimator
-
Epsilon values for different subspace dimensionalities
- epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.COPACNeighborPredicate
-
Squared value of epsilon.
- epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- equal(DBIDRef, DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
-
Compare two DBIDs, for equality testing.
- equal(DBIDRef, DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Test two DBIDs for equality.
- equal(DBIDRef, DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
-
- equal(long, long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
-
Test two bitsets for equality
- equal(long[], long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
-
Test two bitsets for equality
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.CASHInterval
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
equals is used in updating the heap!
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeapEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.DenseItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Itemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.OneItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.SmallDenseItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.Individuum
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.BitVector
-
Indicates whether some other object is "equal to" this BitVector.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ClassLabel
-
Any ClassLabel should ensure a natural ordering that is consistent with
equals.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ExternalID
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.HyperBoundingBox
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.SimpleClassLabel
-
- equals(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Test two SpatialComparables for equality.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.Subspace
-
- equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBID
-
Deprecated.
- equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDRef
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDPair
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDRange.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDVar.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.AbstractSimilarityAdapter
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ArcCosineDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ArcCosineUnitlengthDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.BrayCurtisDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CanberraDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ClarkDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.HistogramIntersectionDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsolutePearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsoluteUncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.PearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredUncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.UncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedSquaredPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CosineDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CosineUnitlengthDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedDoubleDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedFloatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedSparseDoubleDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedSparseFloatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.DimensionSelectingLatLngDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LatLngDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LngLatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.HistogramMatchDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.KolmogorovSmirnovDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.MatrixWeightedQuadraticDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPIntegerNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.ManhattanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MaximumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MinimumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedLPNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedSquaredEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.ChiSquaredDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.FisherRaoDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.HellingerDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.JeffreyDivergenceDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceAsymmetricDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.TriangularDiscriminationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.TriangularDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.RandomStableDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.set.HammingDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.set.JaccardSimilarityDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.strings.LevenshteinDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.strings.NormalizedLevenshteinDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractDimensionsSelectingDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.OnedimensionalDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceLPNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceManhattanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceMaximumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.LCSSDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments.Segment
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.DistanceResultAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.FilteredDistanceResultAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.OutlierScoreAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.SimpleAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
-
Returns true if this object is the same as the o argument;
false
otherwise.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeDirectoryEntry
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeLeafEntry
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query.MTreeSearchCandidate
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialDirectoryEntry
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialPointLeafEntry
-
- equals(double[], double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Compare for equality.
- equals(double[][], double[][]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Test for equality
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.persistent.AbstractExternalizablePage
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleIntPair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleObjPair
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntIntPair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.Pair
-
Simple equals statement.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.visualization.VisualizationTask
-
- equalsPlusTimes(double[], double[], double[], double) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Compute out = x + y * a, for 2d.
- equationsToString(String, int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(String, NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- erf(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Error function for Gaussian distributions = Normal distributions.
- ERF_COEFF1 - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
T.
- ERF_COEFF2 - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
T.
- erfc(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Complementary error function for Gaussian distributions = Normal
distributions.
- erfcinv(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Inverse error function.
- ErfcStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled using stddev.
- ErfcStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcStddevWeight
-
- ErfcWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled such that the result it 0.1
at distance == max
erfc(1.1630871536766736 * distance / max)
The value of 1.1630871536766736 is erfcinv(0.1), to achieve the intended
scaling.
- ErfcWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcWeight
-
- ERiC<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
- ERiC(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
-
Constructor.
- ERiC.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Parameterization class.
- ERiC.Settings - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Class to wrap the ERiC settings.
- ERiCNeighborPredicate<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
ERiC neighborhood predicate.
- ERiCNeighborPredicate(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.ERiCNeighborPredicate
-
Constructor.
- ERiCNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Instance for a particular data set.
- ERiCNeighborPredicate.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Parameterization class.
- ERPDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Edit Distance With Real Penalty distance for numerical vectors.
- ERPDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
-
Constructor.
- ERPDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Parameterization class.
- err - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
-
Output stream for error output.
- ERR_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message when dimensionalities do not agree.
- ERR_INVALID_RANGE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message when min > max is given as a range.
- ERR_MATRIX_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message when matrix dimensionalities do not agree.
- ERR_MATRIX_INNERDIM - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message when matrix dimensionalities do not agree.
- ERR_MATRIX_NONSQUARE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error when a non-square matrix is used with determinant.
- ERR_MATRIX_NOT_SPD - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
When a symmetric positive definite matrix is required.
- ERR_MATRIX_RANK_DEFICIENT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.QRDecomposition
-
When a matrix is rank deficient.
- ERR_MATRIX_RANK_DEFICIENT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
When a matrix is rank deficient.
- ERR_SINGULAR - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error with a singular matrix.
- ERR_TOO_LITTLE_WEIGHT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
-
Error message reported when too little data (weight <= 1) in matrix.
- ERR_VEC_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message when vector dimensionalities do not agree.
- errformat - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
-
Formatter for error messages
- errformat - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
-
Formatter for error messages
- error(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message at the 'severe' level.
- error(CharSequence) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message at the 'severe' level.
- ErrorFormatter - Class in de.lmu.ifi.dbs.elki.logging
-
Format a log record for error output, including a stack trace if available.
- ErrorFormatter() - Constructor for class de.lmu.ifi.dbs.elki.logging.ErrorFormatter
-
Constructor.
- errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.AbstractParameterization
-
Errors
- errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.UnParameterization
-
Errors
- errorsTo(Parameterization) - Method in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Set the error target, since there is no unique way where
errors can be reported.
- errorTarget - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Error target
- errorVector(V) - Method in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
-
Returns the error vectors after projection.
- errStyle - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
-
Error message style
- esq - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- est - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.BestFitEstimator.BestFit
-
Best estimator.
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.DistributionEstimator
-
General form of the parameter estimation
- estimate(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.DistributionEstimator
-
General form of the parameter estimation
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaChoiWetteEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.InverseGaussianMLEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMLEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LMMDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLevenbergMarquardtKDEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MADDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.BestFitEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.TrimmedEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.WinsorizingEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MOMDistributionEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLevenbergMarquardtKDEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMLEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
-
- estimate(double, double, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
-
Estimate from simple characteristics.
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
- estimate(DoubleMinMax) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimate(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AggregatedHillEstimator
-
- estimate(KNNQuery<?>, DBIDRef, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
-
- estimate(RangeQuery<?>, DBIDRef, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ALIDEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.GEDEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.HillEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double[], int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, ? super A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(KNNQuery<?>, DBIDRef, int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a Reference Point, a KNNQuery and the neighborhood size k.
- estimate(RangeQuery<?>, DBIDRef, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.LMomentsEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.MOMEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWM2Estimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWMEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.RVEstimator
-
- estimate(A, NumberArrayAdapter<?, ? super A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ZipfEstimator
-
- estimateDensities(Relation<O>, KNNQuery<O>, DBIDs, WritableDataStore<double[]>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.KDEOS
-
Perform the kernel density estimation step.
- estimateEigenvalue(double[][], double[]) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.transform.FastMultidimensionalScalingTransform
-
Estimate the (singed!)
- estimateFromExpMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedLogisticAlternateLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedParetoLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceLMMEstimator
-
- estimateFromLMoments(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LMMDistributionEstimator
-
Estimate from the L-Moments.
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalBilkovaLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.SkewGNormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLMMEstimator
-
- estimateFromLogMeanVariance(MeanVariance, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
-
Estimate the distribution from mean and variance.
- estimateFromLogMeanVariance(MeanVariance, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMOMEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogLogisticMADEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
-
General form of the parameter estimation
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMADEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLogMADEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaLogMOMEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMeanVarianceEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
-
General form of the parameter estimation
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.InverseGaussianMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
-
Estimate the distribution from mean and variance.
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMOMEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.CauchyMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MADDistributionEstimator
-
General form of the parameter estimation
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMADEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MOMDistributionEstimator
-
General form of the parameter estimation
- estimateID(DBIDRef, DoubleDBIDListIter, double[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS
-
Estimate the local intrinsic dimensionality.
- estimateInitialBeta(DBIDRef, DoubleDBIDListIter, double) - Static method in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.SOS
-
Estimate beta from the distances in a row.
- estimateInitialBeta(double[], double) - Static method in class de.lmu.ifi.dbs.elki.algorithm.projection.PerplexityAffinityMatrixBuilder
-
Estimate beta from the distances in a row.
- EstimateIntrinsicDimensionality<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Estimate global average intrinsic dimensionality of a data set.
- EstimateIntrinsicDimensionality(DistanceFunction<? super O>, IntrinsicDimensionalityEstimator, double, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
-
Constructor.
- EstimateIntrinsicDimensionality.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.DiagonalGaussianModel
-
- estimateLogDensity(NumberVector) - Method in interface de.lmu.ifi.dbs.elki.algorithm.clustering.em.EMClusterModel
-
Estimate the log likelihood of a vector.
- estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.MultivariateGaussianModel
-
- estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.SphericalGaussianModel
-
- estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.TextbookMultivariateGaussianModel
-
- estimateLogDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.TwoPassMultivariateGaussianModel
-
- estimateThreshold(CFTree.TreeNode) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.CFTree
-
- estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.AffineProjection
-
- estimateViewport() - Method in interface de.lmu.ifi.dbs.elki.visualization.projections.Projection2D
-
Estimate the viewport requirements
- estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.Simple2D
-
- estimateY(double[][]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
-
Perform an estimation of y on the specified matrix.
- estimateY(double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.PolynomialRegression
-
Performs an estimation of y on the specified x value.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS.Parameterizer
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier.Parameterizer
-
Estimator for intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS.Parameterizer
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Parameterizer
-
Estimator of intrinsic dimensionality.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
-
Estimation method.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
-
Estimation method.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IDOS.Parameterizer
-
The class used for estimating the intrinsic dimensionality.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.IntrinsicDimensionalityOutlier.Parameterizer
-
Class to use for estimating the ID.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS.Parameterizer
-
Parameter for ID estimation.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.projection.IntrinsicNearestNeighborAffinityMatrixBuilder.Parameterizer
-
Parameter for ID estimation.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
-
Estimation method
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseBetaNormalization.Parameterizer
-
Stores the distribution estimators
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization
-
Stores the distribution estimators
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization.Parameterizer
-
Stores the distribution estimators
- EU - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
-
Euler-Mascheroni constant.
- EUCLIDEAN_KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.svg.SVGHyperSphere
-
Factor used for approximating circles with cubic beziers.
- EuclideanDistanceCriterion - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch
-
Distance criterion.
- EuclideanDistanceCriterion() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.EuclideanDistanceCriterion
-
- EuclideanDistanceCriterion.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch
-
Parameterization class
- EuclideanDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
-
- EuclideanDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
-
- EuclideanDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
-
Parameterization class.
- EuclideanHashFunctionFamily - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
-
2-stable hash function family for Euclidean distances.
- EuclideanHashFunctionFamily(RandomFactory, double, int) - Constructor for class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.EuclideanHashFunctionFamily
-
Constructor.
- EuclideanHashFunctionFamily.Parameterizer - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
-
Parameterization class.
- euclideanLength(double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Euclidean length of the vector sqrt(v1T v1).
- EuclideanRStarTreeKNNQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
-
Instance of a KNN query for a particular spatial index.
- EuclideanRStarTreeKNNQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
-
Constructor.
- EuclideanRStarTreeRangeQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
-
Instance of a range query for a particular spatial index.
- EuclideanRStarTreeRangeQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeRangeQuery
-
Constructor.
- EULERS_CONST - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
-
Euler–Mascheroni constant
- eval(double, double[]) - Method in interface de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.FittingFunction
-
Compute value at position x as well as gradients for the parameters
- eval(double, double[]) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.GaussianFittingFunction
-
Compute the mixture of Gaussians at the given position
- evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
The data input configured
- evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
-
Algorithm step to run on.
- evalTab - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.MultiStepGUI
-
Evaluation panel.
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.DCGEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.NDCGEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate a given predicate and iterator.
- evaluate(DBIDs, DoubleDBIDList) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate given a list of positives and a scoring.
- evaluateBy(ScoreEvaluation) - Method in class de.lmu.ifi.dbs.elki.result.outlier.OutlierResult
-
Evaluate given a set of positives and a scoring.
- EvaluateCIndex<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the C-index of a data set.
- EvaluateCIndex(DistanceFunction<? super O>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
-
Constructor.
- EvaluateCIndex.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateClustering - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Evaluate a clustering result by comparing it to an existing cluster label.
- EvaluateClustering(ClusteringAlgorithm<?>, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
-
Constructor.
- evaluateClustering(Database, Relation<? extends O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDBCV
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
-
Evaluate a single clustering.
- EvaluateClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Parameterization class.
- EvaluateClustering.ScoreResult - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Result object for outlier score judgements.
- evaluateClusters(ArrayList<PROCLUS.PROCLUSCluster>, long[][], Relation<V>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PROCLUS
-
Evaluates the quality of the clusters.
- EvaluateConcordantPairs<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Gamma Criterion of a data set.
- EvaluateConcordantPairs(PrimitiveDistanceFunction<? super NumberVector>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
-
Constructor.
- EvaluateConcordantPairs.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateDaviesBouldin - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Davies-Bouldin index of a data set.
- EvaluateDaviesBouldin(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
-
Constructor.
- EvaluateDaviesBouldin.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateDBCV<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Density-Based Clustering Validation Index.
- EvaluateDBCV(DistanceFunction<? super O>) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDBCV
-
Constructor.
- EvaluateDBCV.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateIntrinsicDimensionalityEstimators - Class in de.lmu.ifi.dbs.elki.application.experiments
-
Class for testing the estimation quality of intrinsic dimensionality
estimators.
- EvaluateIntrinsicDimensionalityEstimators(int, int, int, int, EvaluateIntrinsicDimensionalityEstimators.Aggregate, EvaluateIntrinsicDimensionalityEstimators.OutputFormat, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.application.experiments.EvaluateIntrinsicDimensionalityEstimators
-
Constructor.
- EvaluateIntrinsicDimensionalityEstimators.Aggregate - Enum in de.lmu.ifi.dbs.elki.application.experiments
-
Aggregation methods.
- EvaluateIntrinsicDimensionalityEstimators.OutputFormat - Enum in de.lmu.ifi.dbs.elki.application.experiments
-
Output format
- EvaluateIntrinsicDimensionalityEstimators.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.experiments
-
Parameterization class.
- evaluateKNN(double[], ModifiableDoubleDBIDList, Relation<?>, Object2IntOpenHashMap<Object>, Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance.KNNEvaluator
-
Evaluate by simulating kNN classification for k=1...maxk
- evaluateOrderingResult(int, SetDBIDs, DBIDs) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
-
- evaluateOutlierResult(Database, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.ComputeOutlierHistogram
-
Evaluate a single outlier result as histogram.
- evaluateOutlierResult(int, SetDBIDs, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
-
- EvaluatePBMIndex - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the PBM index of a clustering
Reference:
M.
- EvaluatePBMIndex(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
-
Constructor.
- EvaluatePBMIndex.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluatePrecomputedOutlierScores - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
-
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores
, and compute popular evaluation metrics for
it.
- EvaluatePrecomputedOutlierScores(File, StreamingParser, Pattern, File, String) - Constructor for class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Constructor.
- EvaluatePrecomputedOutlierScores.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
-
Parameterization class.
- evaluateRanking(ScoreEvaluation, Cluster<?>, DoubleDBIDList) - Static method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
-
Evaluate given a cluster (of positive elements) and a scoring list.
- EvaluateRankingQuality<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate a distance function with respect to kNN queries.
- EvaluateRankingQuality(DistanceFunction<? super V>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality
-
Constructor.
- EvaluateRankingQuality.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- EvaluateRetrievalPerformance<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate a distance functions performance by computing the mean average
precision, ROC, and NN classification performance when ranking the objects by
distance.
- EvaluateRetrievalPerformance(DistanceFunction<? super O>, double, RandomFactory, boolean, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance
-
Constructor.
- EvaluateRetrievalPerformance.KNNEvaluator - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate kNN retrieval performance.
- EvaluateRetrievalPerformance.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- EvaluateRetrievalPerformance.RetrievalPerformanceResult - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Result object for MAP scores.
- EvaluateSilhouette<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the silhouette of a data set.
- EvaluateSilhouette(DistanceFunction<? super O>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Constructor.
- EvaluateSilhouette(DistanceFunction<? super O>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Constructor.
- EvaluateSilhouette.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateSimplifiedSilhouette - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the simplified silhouette of a data set.
- EvaluateSimplifiedSilhouette(NumberVectorDistanceFunction<?>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
-
Constructor.
- EvaluateSimplifiedSilhouette.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateSquaredErrors - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Evaluate a clustering by reporting the squared errors (SSE, SSQ), as used by
k-means.
- EvaluateSquaredErrors(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
-
Constructor.
- EvaluateSquaredErrors.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateVarianceRatioCriteria<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Variance Ratio Criteria of a data set, also known as
Calinski-Harabasz index.
- EvaluateVarianceRatioCriteria(NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
-
Constructor.
- EvaluateVarianceRatioCriteria.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- Evaluation(ResultHierarchy, List<? extends Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
-
Constructor.
- evaluationName - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.ConfusionMatrixEvaluationResult
-
Holds the used EvaluationProcedure.
- EvaluationResult - Class in de.lmu.ifi.dbs.elki.result
-
Abstract evaluation result.
- EvaluationResult(String, String) - Constructor for class de.lmu.ifi.dbs.elki.result.EvaluationResult
-
Constructor.
- EvaluationResult.Measurement - Class in de.lmu.ifi.dbs.elki.result
-
Class representing a single measurement.
- EvaluationResult.MeasurementGroup - Class in de.lmu.ifi.dbs.elki.result
-
A group of evaluation measurements.
- evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask
-
The evaluation step.
- evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
-
- EvaluationStep - Class in de.lmu.ifi.dbs.elki.workflow
-
The "evaluation" step, where data is analyzed.
- EvaluationStep(List<? extends Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
-
Constructor.
- EvaluationStep.Evaluation - Class in de.lmu.ifi.dbs.elki.workflow
-
Class to handle running the evaluators on a database instance.
- EvaluationStep.Parameterizer - Class in de.lmu.ifi.dbs.elki.workflow
-
Parameterization class.
- EvaluationTabPanel - Class in de.lmu.ifi.dbs.elki.gui.multistep.panels
-
Panel to handle result evaluation
- EvaluationTabPanel(InputTabPanel, AlgorithmTabPanel) - Constructor for class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
Constructor.
- EvaluationVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
-
Pseudo-Visualizer, that lists the cluster evaluation results found.
- EvaluationVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.EvaluationVisualization
-
Constructor.
- Evaluator - Interface in de.lmu.ifi.dbs.elki.evaluation
-
Interface for post-algorithm evaluations, such as histograms, outlier score
evaluations, ...
- EVALUATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
-
Parameter ID to specify the evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
-
Evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
-
Evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
-
Evaluators to run
- evaluteResult(Database, Clustering<?>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
-
Evaluate a clustering result.
- Event() - Constructor for enum de.lmu.ifi.dbs.elki.datasource.bundle.BundleStreamSource.Event
-
- eventarea - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
Sensitive (clickable) area
- eventManager - Variable in class de.lmu.ifi.dbs.elki.database.AbstractDatabase
-
The event manager, collects events and fires them on demand.
- EvolutionarySearch(Relation<V>, ArrayList<ArrayList<DBIDs>>, int, Random) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.EvolutionarySearch
-
Constructor.
- EVT_DBLCLICK_DELAY - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer.Instance.SegmentListenerProxy
-
Mouse double click time window in milliseconds
- ewma - Variable in class de.lmu.ifi.dbs.elki.algorithm.timeseries.SigniTrendChangeDetection.Instance
-
Moving average and variance.
- ewmv - Variable in class de.lmu.ifi.dbs.elki.algorithm.timeseries.SigniTrendChangeDetection.Instance
-
Moving average and variance.
- exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute exactly (slower).
- exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
-
Exactness flag.
- EXACT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
-
Flag to compute exact value range for binning.
- exactMinMax(Relation<O>, DistanceQuery<O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute the exact maximum and minimum.
- exception(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message with exception at the 'severe' level.
- exception(Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log an exception at the 'severe' level.
- exception(Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
-
Static version to log a severe exception.
- exception(String, Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
-
Static version to log a severe exception.
- excessOfMass() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction.TempCluster
-
Excess of mass measure.
- excludeNotCovered(ModifiableDoubleDBIDList, double, ModifiableDoubleDBIDList) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
-
Retain all elements within the current cover.
- execute() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
-
Execute the task.
- executed - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
-
Signal when an database input has been executed.
- executeResize(double) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.LazyCanvasResizer
-
Callback function that needs to be overridden with actual implementations.
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.AlgorithmTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.LoggingTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
-
Execute the configured step.
- Executor - Interface in de.lmu.ifi.dbs.elki.parallel
-
Processor executor.
- executor - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelCore
-
Executor service.
- existed - Variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
-
Whether or not the file originally existed
- existed - Variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
-
Whether we are initializing from an existing file.
- existing - Variable in class de.lmu.ifi.dbs.elki.data.ClassLabel.Factory
-
Set for reusing the same objects.
- existing - Variable in class de.lmu.ifi.dbs.elki.database.relation.ConvertToStringView
-
The database we use
- exp(double) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
-
Delegate to FastMath.exp.
- exp - Variable in class de.lmu.ifi.dbs.elki.result.EvaluationResult.Measurement
-
Observed value, minimum, maximum, expected value.
- expandCluster(Relation<O>, RangeQuery<O>, DBIDRef, ArrayModifiableDBIDs, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
-
DBSCAN-function expandCluster.
- expandCluster(DBIDRef, int, WritableIntegerDataStore, T, ArrayModifiableDBIDs, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Instance
-
Set-based expand cluster implementation.
- expandCluster(int, WritableIntegerDataStore, KNNQuery<O>, DBIDs, double, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.LSDBC
-
Set-based expand cluster implementation.
- expandCluster(DBIDRef, int, WritableIntegerDataStore, ModifiableDoubleDBIDList, ArrayModifiableDBIDs, RangeQuery<V>, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Instance
-
Set-based expand cluster implementation.
- expandCluster(SimilarityQuery<O>, DBIDRef, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
-
DBSCAN-function expandCluster adapted to SNN criterion.
- expandClusterOrder(DBID, ClusterOrder, DistanceQuery<V>, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.FastOPTICS
-
OPTICS algorithm for processing a point, but with different density
estimates
- expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeap.Instance
-
OPTICS-function expandClusterOrder.
- expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSList.Instance
-
OPTICS-function expandClusterOrder.
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO.Instance
-
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.GeneralizedOPTICS.Instance
-
Add the current DBID to the cluster order, and expand its neighbors if
minPts and similar conditions are satisfied.
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Instance
-
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Instance
-
- expandDirNodes(SpatialPrimitiveDistanceFunction<V>, DeLiCluNode, DeLiCluNode) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the specified directory nodes.
- expanded - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTree
-
Holds the ids of the expanded nodes.
- expandLeafNodes(SpatialPrimitiveDistanceFunction<V>, DeLiCluNode, DeLiCluNode, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the specified leaf nodes.
- expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
-
- expandNode(O, KNNHeap, DoubleIntegerMinHeap, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery
-
- expandNodes(DeLiCluTree, SpatialPrimitiveDistanceFunction<V>, DeLiClu.SpatialObjectPair, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the spatial nodes of the specified pair.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
-
Constant expansion rate. 2 would be the intuitive value, but the original
version used 1.3, so we copy this.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory
-
Constant expansion rate. 2 would be the intuitive value, but the original
version used 1.3, so we copy this.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
-
Expansion rate.
- EXPANSION_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
-
Expansion rate of the tree (going upward).
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP
-
Expected amount of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
-
Expected amount of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier
-
Expected share of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
-
Expected share of outliers
- EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
-
Expected share of outliers.
- EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
-
Expected share of outliers
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.DCGEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.NDCGEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
-
- expected(int, int) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Expected score for a random result.
- ExpGammaDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Exp-Gamma Distribution, with random generation and density functions.
- ExpGammaDistribution(double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
-
Constructor for Gamma distribution.
- ExpGammaDistribution(double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
-
Constructor for Gamma distribution.
- ExpGammaDistribution(double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
-
Constructor for Gamma distribution.
- ExpGammaDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Parameterization class
- ExpGammaExpMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Simple parameter estimation for the ExpGamma distribution.
- ExpGammaExpMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpGammaExpMOMEstimator
-
Private constructor.
- ExpGammaExpMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- expirePage(P) - Method in class de.lmu.ifi.dbs.elki.persistent.LRUCache
-
Write page through to disk.
- explain - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.AutotuningPCA.Cand
-
Score
- explainedVariance - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
-
The amount of Variance explained by strong Eigenvalues
- EXPONENT_OVERFLOW - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.ParseUtil
-
Preallocated exceptions.
- ExponentialDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Exponential distribution.
- ExponentialDistribution(double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Parameterization class
- ExponentialIntGenerator - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.range
-
Generate an exponential range.
- ExponentialIntGenerator(int, int, int) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.range.ExponentialIntGenerator
-
Constructor.
- ExponentialLMMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
- ExponentialLMMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
-
Constructor.
- ExponentialLMMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentiallyModifiedGaussianDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
is a combination of a normal distribution and an exponential distribution.
- ExponentiallyModifiedGaussianDistribution(double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution(double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution(double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Parameterization class
- ExponentialMADEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMADEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
-
Private constructor, use static instance!
- ExponentialMADEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMedianEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMedianEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
-
Private constructor, use static instance!
- ExponentialMedianEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using the mean, which is the
maximum-likelihood estimate (MLE), but not very robust.
- ExponentialMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
-
Private constructor, use static instance!
- ExponentialMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled such that the result it 0.1 at distance
== max
stddev * exp(-.5 * distance/stddev)
This is similar to the Gaussian weight function, except distance/stddev is
not squared.
- ExponentialStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialStddevWeight
-
- ExponentialWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled such that the result it 0.1 at distance
== max
exp(-2.3025850929940455 * distance/max)
This is similar to the Gaussian weight function, except distance/max is not
squared
- ExponentialWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialWeight
-
- EXPONENTS_ID - Static variable in class tutorial.distancefunction.MultiLPNorm.Parameterizer
-
Option ID for the exponents
- exportItem - Variable in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
The "Export Image" button, to save the image
- ExportVisualizations - Class in de.lmu.ifi.dbs.elki.result
-
Class that automatically generates all visualizations and exports them into
SVG files.
- ExportVisualizations(File, VisualizerParameterizer, double, ExportVisualizations.Format) - Constructor for class de.lmu.ifi.dbs.elki.result.ExportVisualizations
-
Constructor.
- ExportVisualizations(File, VisualizerParameterizer, double, ExportVisualizations.Format, int) - Constructor for class de.lmu.ifi.dbs.elki.result.ExportVisualizations
-
Constructor.
- ExportVisualizations.Format - Enum in de.lmu.ifi.dbs.elki.result
-
File format
- ExportVisualizations.Parameterizer - Class in de.lmu.ifi.dbs.elki.result
-
Parameterization class
- extend(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.data.ModifiableHyperBoundingBox
-
Extend the bounding box by some other spatial object.
- extend(A, ArrayAdapter<T, A>, T) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
Static wrapper that has a nicer generics signature.
- ExtendedArray<T> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
-
Class to extend an array with a single element virtually.
- ExtendedArray(Object, ArrayAdapter<T, Object>, T) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
Constructor.
- ExtendedNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Neighborhood obtained by computing the k-fold closure of an existing
neighborhood.
- ExtendedNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood
-
Constructor.
- ExtendedNeighborhood.Factory<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Factory class.
- ExtendedNeighborhood.Factory.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Parameterization class.
- extendMBR(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialDirectoryEntry
-
Extend the MBR of this node.
- extendNeighborhood(Database, Relation<? extends O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood.Factory
-
Method to load the external neighbors.
- EXTENSION - Static variable in class de.lmu.ifi.dbs.elki.result.textwriter.MultipleFilesOutput
-
File name extension.
- ExternalClustering - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
-
- ExternalClustering(File) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.meta.ExternalClustering
-
Constructor.
- ExternalClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
-
Parameterization class
- ExternalDoubleOutlierScore - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
-
External outlier detection scores, loading outlier scores from an external
file.
- ExternalDoubleOutlierScore(File, Pattern, Pattern, boolean, ScalingFunction) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.ExternalDoubleOutlierScore
-
Constructor.
- ExternalDoubleOutlierScore.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
-
Parameterization class
- ExternalID - Class in de.lmu.ifi.dbs.elki.data
-
External ID objects.
- ExternalID(String) - Constructor for class de.lmu.ifi.dbs.elki.data.ExternalID
-
Constructor.
- EXTERNALID - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
-
External ID type.
- EXTERNALID_INDEX_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
-
Parameter that specifies the index of the label to be used as external
Id, starting at 0.
- ExternalIDFilter - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
-
Class that turns a label column into an external ID column.
- ExternalIDFilter(int) - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
-
Constructor.
- ExternalIDFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
-
Parameterization class.
- externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
-
The index of the label to be used as external Id.
- externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
-
- ExternalIDJoinDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
-
Joins multiple data sources by their label
- ExternalIDJoinDatabaseConnection(List<ObjectFilter>, List<DatabaseConnection>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.ExternalIDJoinDatabaseConnection
-
Constructor.
- ExternalIDJoinDatabaseConnection.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource
-
Parameterization class.
- ExternalizablePage - Interface in de.lmu.ifi.dbs.elki.persistent
-
Base interface for externalizable pages.
- ExternalNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
A precomputed neighborhood, loaded from an external file.
- ExternalNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExternalNeighborhood
-
Constructor.
- ExternalNeighborhood.Factory - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Factory class.
- ExternalNeighborhood.Factory.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Parameterization class.
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
The extra element
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrAnc
-
Additional object to return as first result.
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrDesc
-
Additional object to return as first result.
- EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree
-
Debugging flag: do extra integrity checks.
- EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.AbstractRStarTree
-
Development flag: This will enable some extra integrity checks on the tree.
- extract(int, int, int, boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extract(int, int, int, int, int[], int, int[], int[], boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extractClusters() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.AbstractCutDendrogram.Instance
-
Extract all clusters from the pi-lambda-representation.
- extractClusters(ClusterOrder, Relation<?>, double, int) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi
-
Extract clusters from a cluster order result.
- extractClusters(Relation<V>, DiSH.DiSHClusterOrder) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
-
Extracts the clusters from the cluster order.
- extractCorrelationClusters(Clustering<Model>, Relation<V>, int, ERiCNeighborPredicate<V>.Instance) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
-
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
- extractItemsets(DBIDs[], int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
- extractItemsets(DBIDs, DBIDs[], int[], int, int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
- extractLinear(int, int, int, int, int[], int, int[], FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets from a linear tree.
- extremum_alpha_n(int, double[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Determines the value for alpha_n where this function has a (local)
extremum.
- extremumType - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Holds the type of the global extremum.
- extremumType(int, double[], HyperBoundingBox) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Returns the type of the extremum at the specified alpha values.
- ExtremumType() - Constructor for enum de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction.ExtremumType
-