Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

N

n - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering.ChengAndChurch
Number of biclusters to be found.
n - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering.ChengAndChurch.Parameterizer
Number of biclusters to be found.
n - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.ClusteringFeature
Number of objects
n - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut
Number of outliers to compute exactly
n - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut.Parameterizer
Top-n candidates to compute exactly
n - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.selection.FirstNStreamFilter
Remaining entries to keep
n - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.selection.FirstNStreamFilter.Parameterizer
Number of objects to keep
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
Row and column dimension (square matrix).
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.LUDecomposition
Row and column dimensions, and pivot sign.
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.FirstNEigenPairFilter
The threshold for strong eigenvectors: n eigenvectors with the n highest eigenvalues are marked as strong eigenvectors.
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.filter.FirstNEigenPairFilter.Parameterizer
The number of eigenpairs to keep.
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.QRDecomposition
Row and column dimensions.
n - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.SingularValueDecomposition
Row and column dimensions.
n - Variable in class de.lmu.ifi.dbs.elki.math.Mean
Weight sum (number of samples).
n - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.PoissonDistribution
Number of tries
n - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.PoissonDistribution.Parameterizer
Number of trials.
N_DEFAULT - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation.Parameterizer
Default number of folds.
N_DEFAULT - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation.Parameterizer
Default number of folds.
N_DEFAULT - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation.Parameterizer
Default number of folds.
N_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering.ChengAndChurch.Parameterizer
Number of biclusters to be found.
N_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut.Parameterizer
Parameter to specify how many outliers should be computed
N_ID - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.PoissonDistribution.Parameterizer
Number of trials.
N_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.referencepoints.RandomGeneratedReferencePoints.Parameterizer
Parameter to specify the number of requested reference points.
N_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.referencepoints.RandomSampleReferencePoints.Parameterizer
Parameter to specify the sample size.
n_star - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut
Set sizes, total and current iteration
NaiveAgglomerativeHierarchicalClustering1<O> - Class in tutorial.clustering
This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps.
NaiveAgglomerativeHierarchicalClustering1(DistanceFunction<? super O>, int) - Constructor for class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering1
Constructor.
NaiveAgglomerativeHierarchicalClustering1.Parameterizer<O> - Class in tutorial.clustering
Parameterization class
NaiveAgglomerativeHierarchicalClustering2<O> - Class in tutorial.clustering
This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps.
NaiveAgglomerativeHierarchicalClustering2(DistanceFunction<? super O>, int) - Constructor for class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering2
Constructor.
NaiveAgglomerativeHierarchicalClustering2.Parameterizer<O> - Class in tutorial.clustering
Parameterization class
NaiveAgglomerativeHierarchicalClustering3<O> - Class in tutorial.clustering
This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps.
NaiveAgglomerativeHierarchicalClustering3(DistanceFunction<? super O>, int, NaiveAgglomerativeHierarchicalClustering3.Linkage) - Constructor for class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering3
Constructor.
NaiveAgglomerativeHierarchicalClustering3.Linkage - Enum in tutorial.clustering
Different linkage strategies.
NaiveAgglomerativeHierarchicalClustering3.Parameterizer<O> - Class in tutorial.clustering
Parameterization class
NaiveAgglomerativeHierarchicalClustering4<O> - Class in tutorial.clustering
This tutorial will step you through implementing a well known clustering algorithm, agglomerative hierarchical clustering, in multiple steps.
NaiveAgglomerativeHierarchicalClustering4(DistanceFunction<? super O>, NaiveAgglomerativeHierarchicalClustering4.Linkage) - Constructor for class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering4
Constructor.
NaiveAgglomerativeHierarchicalClustering4.Linkage - Enum in tutorial.clustering
Different linkage strategies.
NaiveAgglomerativeHierarchicalClustering4.Parameterizer<O> - Class in tutorial.clustering
Parameterization class
NaiveMeanShiftClustering<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering
Mean-shift based clustering algorithm.
NaiveMeanShiftClustering(DistanceFunction<? super V>, KernelDensityFunction, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering
Constructor.
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering
Parameterizer.
NaiveProjectedKNNPreprocessor<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Compute the approximate k nearest neighbors using 1 dimensional projections.
NaiveProjectedKNNPreprocessor(Relation<O>, double, int, RandomProjectionFamily, Random) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NaiveProjectedKNNPreprocessor
Constructor.
NaiveProjectedKNNPreprocessor.Factory<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Index factory class
NaiveProjectedKNNPreprocessor.Factory.Parameterizer - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Parameterization class.
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
KNN Query processor for naive projections.
NaiveProjectedKNNQuery(DistanceQuery<O>) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery
Constructor.
naiveQuery(V, WritableDoubleDataStore, HashSetModifiableDBIDs) - Method in class de.lmu.ifi.dbs.elki.index.invertedlist.InMemoryInvertedIndex
Query the most similar objects, abstract version.
naiveQueryDense(NumberVector, WritableDoubleDataStore, HashSetModifiableDBIDs) - Method in class de.lmu.ifi.dbs.elki.index.invertedlist.InMemoryInvertedIndex
Query the most similar objects, dense version.
naiveQuerySparse(SparseNumberVector, WritableDoubleDataStore, HashSetModifiableDBIDs) - Method in class de.lmu.ifi.dbs.elki.index.invertedlist.InMemoryInvertedIndex
Query the most similar objects, sparse version.
name - Variable in class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
Constant column to prepend (may be null)
name - Variable in class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores.Parameterizer
Name column to prepend.
name - Variable in class de.lmu.ifi.dbs.elki.data.Cluster
Cluster name.
name - Variable in class de.lmu.ifi.dbs.elki.data.ExternalID
Object name
name - Variable in class de.lmu.ifi.dbs.elki.data.synthetic.bymodel.GeneratorSingleCluster
Cluster name
name - Variable in class de.lmu.ifi.dbs.elki.data.synthetic.bymodel.GeneratorStatic
Cluster name
name - Variable in class de.lmu.ifi.dbs.elki.database.relation.MaterializedDoubleRelation
The relation name.
name - Variable in class de.lmu.ifi.dbs.elki.database.relation.MaterializedRelation
The relation name.
name - Variable in class de.lmu.ifi.dbs.elki.result.BasicResult
Result name, for presentation
name - Variable in class de.lmu.ifi.dbs.elki.result.EvaluationResult.Measurement
Measurement name.
name - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID
Option name
name - Variable in class de.lmu.ifi.dbs.elki.visualization.colors.ListBasedColorLibrary
Color scheme name
name - Variable in class de.lmu.ifi.dbs.elki.visualization.css.CSSClass
CSS class name
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.gui.SelectionTableWindow
A short name characterizing this Visualizer.
name - Variable in class de.lmu.ifi.dbs.elki.visualization.style.PropertiesBasedStyleLibrary
Style scheme name
name - Variable in class de.lmu.ifi.dbs.elki.visualization.VisualizationTask
Name
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSClusterVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotVisualizer
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSSteepAreaVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer
CircleSegments visualizer name
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.AxisReorderVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.AxisVisibilityVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.BoundingBoxVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster.ClusterOutlineVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster.ClusterParallelMeanVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.index.RTreeParallelVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.LineVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.ParallelAxisVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionAxisRangeVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionLineVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.AxisVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.ClusterHullVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.ClusterMeanVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.ClusterOrderVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.ClusterStarVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.VoronoiVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.density.DensityEstimationOverlay
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index.TreeMBRVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index.TreeSphereVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.MarkerVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier.BubbleVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier.COPVectorVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.PolygonVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.ReferencePointsVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionConvexHullVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionCubeVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionDotVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipScoreVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.uncertain.UncertainBoundingBoxVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.uncertain.UncertainInstancesVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.uncertain.UncertainSamplesVisualization
A short name characterizing this Visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.DendrogramVisualization
Visualizer name.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.EvaluationVisualization
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.HistogramVisualization
Histogram visualizer name
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.PixmapVisualizer
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.SettingsVisualization
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.SimilarityMatrixVisualizer
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.XYCurveVisualization
Name for this visualizer.
NAME - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.XYPlotVisualization
Name for this visualizer.
NAME_CLASS - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipStringVisualization
A short name characterizing this Visualizer.
NAME_EID - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipStringVisualization
A short name characterizing this Visualizer.
NAME_GEN - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipScoreVisualization
A short name characterizing this Visualizer.
NAME_ID - Static variable in class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores.Parameterizer
Row name.
NAME_ID - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipStringVisualization
A short name characterizing this Visualizer.
NAME_LABEL - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipStringVisualization
A short name characterizing this Visualizer.
namefreq - Variable in class de.lmu.ifi.dbs.elki.result.textwriter.naming.SimpleEnumeratingScheme
Count how often each name occurred so far.
names - Variable in class de.lmu.ifi.dbs.elki.result.textwriter.naming.SimpleEnumeratingScheme
Assigned cluster names.
names - Variable in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
Class names.
NamingScheme - Interface in de.lmu.ifi.dbs.elki.result.textwriter.naming
Naming scheme implementation for clusterings.
nandI(long[], long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
NOTAND o onto v in-place, i.e. v &= ~o
NanoDuration - Class in de.lmu.ifi.dbs.elki.logging.statistics
Class that tracks the runtime of a task with System.nanoTime()
NanoDuration(String) - Constructor for class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
Constructor.
nanpattern - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.CategorialDataAsNumberVectorParser
Pattern for NaN values.
ncounter - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
Number of neighbors.
NDCGEvaluation - Class in de.lmu.ifi.dbs.elki.evaluation.scores
Normalized Discounted Cumulative Gain.
NDCGEvaluation() - Constructor for class de.lmu.ifi.dbs.elki.evaluation.scores.NDCGEvaluation
 
NDCGEvaluation.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.scores
Parameterization class.
near - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.util.Arcball1DOFAdapter
Temp buffer we use for computations.
nearest - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARANS.Assignment
Distance to the nearest medoid of each point.
nearest - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM.Instance
Distance to the nearest medoid of each point.
nearestMeans(double[][], int[][]) - Static method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans
Recompute the separation of cluster means.
NearestNeighborAffinityMatrixBuilder<O> - Class in de.lmu.ifi.dbs.elki.algorithm.projection
Build sparse affinity matrix using the nearest neighbors only.
NearestNeighborAffinityMatrixBuilder(DistanceFunction<? super O>, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.projection.NearestNeighborAffinityMatrixBuilder
Constructor.
NearestNeighborAffinityMatrixBuilder(DistanceFunction<? super O>, double, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.projection.NearestNeighborAffinityMatrixBuilder
Constructor.
NearestNeighborAffinityMatrixBuilder.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.projection
Parameterization class.
needsMetric() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans.Parameterizer
Users could use other non-metric distances at their own risk; but some k-means variants make explicit use of the triangle inequality, we emit extra warnings then.
needsMetric() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansCompare.Parameterizer
 
needsMetric() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansHamerly.Parameterizer
 
needsMetric() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansSimplifiedElkan.Parameterizer
 
needsMetric() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansSort.Parameterizer
 
needsTwoPass() - Method in interface de.lmu.ifi.dbs.elki.algorithm.clustering.em.EMClusterModel
True, if the model needs two passes in the E step.
needsTwoPass() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.TwoPassMultivariateGaussianModel
 
needToInferCaller - Variable in class de.lmu.ifi.dbs.elki.logging.ELKILogRecord
Flag whether we still need to infer the caller.
negative - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ClassLabelFromPatternFilter
Label to return for negative matches.
negative - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ClassLabelFromPatternFilter.Parameterizer
Names for positive and negative classes.
NEGATIVE_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ClassLabelFromPatternFilter.Parameterizer
Class label to assign to negative instances.
NEIGHBORHOOD_FILE_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExternalNeighborhood.Factory.Parameterizer
Parameter to specify the neighborhood file
NEIGHBORHOOD_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier
Parameter to specify the neighborhood predicate to use.
NEIGHBORHOOD_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood.Factory.Parameterizer
Parameter to specify the neighborhood predicate to use.
NEIGHBORHOOD_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted.LinearWeightedExtendedNeighborhood.Factory.Parameterizer
Parameter to specify the neighborhood predicate to use.
neighborhoodDistanceFunction - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
Neighborhood distance function.
NEIGHBORHOODPRED_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Parameterizer
Parameter for neighborhood predicate.
NEIGHBORHOODPRED_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN.Parameterizer
Parameter for neighborhood predicate.
NEIGHBORLIST - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
A list of neighbors.
NeighborPredicate<T> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Get the neighbors of an object Note the Factory/Instance split of this interface.
NeighborPredicate.Instance<T> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
Instance for a particular data set.
NEIGHBORS_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARANS.Parameterizer
The number of neighbors to explore.
NeighborSetPredicate - Interface in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Predicate to obtain the neighbors of a reference object as set.
NeighborSetPredicate.Factory<O> - Interface in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
Factory interface to produce instances.
neighs - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.FastOPTICS
neighbors of a point
newArray() - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) array of DBIDs.
newArray(int) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) array of DBIDs.
newArray(DBIDs) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) array of DBIDs.
newArray() - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) array of DBIDs.
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) array of DBIDs.
newArray(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) array of DBIDs.
newArray() - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newArray(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newArray(DBIDs) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.DoubleMinMax
Generate a new array of initialized DoubleMinMax objects (with default constructor)
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.IntegerMinMax
Generate a new array of initialized IntegerMinMax objects (with default constructor)
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.Mean
Create and initialize a new array of MeanVariance
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.MeanVariance
Create and initialize a new array of MeanVariance
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.MeanVarianceMinMax
Create and initialize a new array of MeanVarianceMinMax
newArray(int) - Static method in class de.lmu.ifi.dbs.elki.math.StatisticalMoments
Create and initialize a new array of MeanVariance
newCluster(int, GeneratorInterface) - Method in class de.lmu.ifi.dbs.elki.data.synthetic.bymodel.GeneratorMain.AssignLabelsByDensity
 
newCluster(int, GeneratorInterface) - Method in class de.lmu.ifi.dbs.elki.data.synthetic.bymodel.GeneratorMain.AssignPoint
Set the current cluster.
newContext(ResultHierarchy, Result) - Method in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer
Make a new visualization context
newCounter(String) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Generate a new counter.
newDistanceDBIDList(int) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Create a modifiable list to store distance-DBID pairs.
newDistanceDBIDList() - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Create a modifiable list to store distance-DBID pairs.
newDistanceDBIDList(int) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Create a modifiable list to store distance-DBID pairs.
newDistanceDBIDList() - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Create a modifiable list to store distance-DBID pairs.
newDistanceDBIDList(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newDistanceDBIDList() - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newDuration(String) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
Generate a new duration statistic.
newe - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeReplaceByID
Replacement element.
newe - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeSubstitute
Replacement element.
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.BitVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.ByteVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.DoubleVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends D, A>) - Method in interface de.lmu.ifi.dbs.elki.data.FeatureVector.Factory
Returns a new FeatureVector of V for the given values.
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.FloatVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.IntegerVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.OneDimensionalDoubleVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.ShortVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseByteVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseDoubleVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseFloatVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseIntegerVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseShortVector.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.SimpleGaussianContinuousUncertainObject.Factory
 
newFeatureVector(Random, A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.uncertainifier.SimpleGaussianUncertainifier
 
newFeatureVector(Random, A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.data.uncertain.uncertainifier.Uncertainifier
Generate a new uncertain object.
newFeatureVector(Random, A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.uncertainifier.UniformUncertainifier
 
newFeatureVector(Random, A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.uncertainifier.UnweightedDiscreteUncertainifier
 
newFeatureVector(Random, A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.uncertainifier.WeightedDiscreteUncertainifier
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.UniformContinuousUncertainObject.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.UnweightedDiscreteUncertainObject.Factory
 
newFeatureVector(A, ArrayAdapter<? extends Number, A>) - Method in class de.lmu.ifi.dbs.elki.data.uncertain.WeightedDiscreteUncertainObject.Factory
 
newGroup(String) - Method in class de.lmu.ifi.dbs.elki.result.EvaluationResult
Add a new measurement group.
newHashSet() - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) hash set of DBIDs.
newHashSet(int) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) hash set of DBIDs.
newHashSet(DBIDs) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new (modifiable) hash set of DBIDs.
newHashSet() - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) hash set of DBIDs.
newHashSet(int) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) hash set of DBIDs.
newHashSet(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new (modifiable) hash set of DBIDs.
newHashSet() - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newHashSet(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newHashSet(DBIDs) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newHeap(int) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Create an heap for kNN search.
newHeap(KNNList) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Build a new heap from a given list.
newHeap(int) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Create an appropriate heap for the distance type.
newHeap(KNNList) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Build a new heap from a given list.
newHeap(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newHeap(KNNList) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newids - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.SimplifiedHierarchyExtraction.TempCluster
New ids, not yet in child clusters.
NEWLINE - Static variable in class de.lmu.ifi.dbs.elki.application.AbstractApplication
The newline string according to system.
NEWLINE - Static variable in class de.lmu.ifi.dbs.elki.gui.minigui.MiniGUI
Newline used in output.
NEWLINE - Static variable in class de.lmu.ifi.dbs.elki.logging.OutputStreamLogger
Newline string.
NEWLINE - Static variable in class de.lmu.ifi.dbs.elki.result.textwriter.TextWriterStream
System newline character(s)
NEWLINE - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
The system newline setting.
NEWLINEC - Static variable in class de.lmu.ifi.dbs.elki.logging.OutputStreamLogger
Newline as char array.
newmeans - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansHamerly.Instance
Temporary storage for the new means.
newmeans - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansSimplifiedElkan.Instance
Scratch space for new means.
newNode(FPGrowth.FPNode, int) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
Create a new node of the FP-tree, linking it into the header table.
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.BitVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.BitVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.ByteVector.Factory
 
newNumberVector(double[]) - Method in class de.lmu.ifi.dbs.elki.data.DoubleVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.DoubleVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.FloatVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.IntegerVector.Factory
 
newNumberVector(double[]) - Method in interface de.lmu.ifi.dbs.elki.data.NumberVector.Factory
Returns a new NumberVector of N for the given values.
newNumberVector(NumberVector) - Method in interface de.lmu.ifi.dbs.elki.data.NumberVector.Factory
Returns a new NumberVector of N for the given values.
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in interface de.lmu.ifi.dbs.elki.data.NumberVector.Factory
Instantiate from any number-array like object.
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.OneDimensionalDoubleVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.ShortVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseByteVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.SparseByteVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseDoubleVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.SparseDoubleVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseFloatVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.SparseFloatVector.Factory
 
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseIntegerVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.SparseIntegerVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in interface de.lmu.ifi.dbs.elki.data.SparseNumberVector.Factory
Returns a new NumberVector of N for the given values.
newNumberVector(A, NumberArrayAdapter<?, ? super A>) - Method in class de.lmu.ifi.dbs.elki.data.SparseShortVector.Factory
 
newNumberVector(Int2DoubleOpenHashMap, int) - Method in class de.lmu.ifi.dbs.elki.data.SparseShortVector.Factory
 
newPageFile(Class<P>) - Method in class de.lmu.ifi.dbs.elki.persistent.LRUCachePageFileFactory
 
newPageFile(Class<P>) - Method in class de.lmu.ifi.dbs.elki.persistent.MemoryPageFileFactory
 
newPageFile(Class<P>) - Method in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFileFactory
 
newPageFile(Class<P>) - Method in interface de.lmu.ifi.dbs.elki.persistent.PageFileFactory
Make a new page file.
newPageFile(Class<P>) - Method in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFileFactory
 
newPair(DBIDRef, DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a DBID pair from two existing DBIDs.
newPair(double, DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a double-DBID pair.
newPair(DBIDRef, DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a DBID pair.
newPair(double, DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a DoubleDBIDPair.
newPair(DBIDRef, DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newPair(double, DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
newStream(String) - Method in class de.lmu.ifi.dbs.elki.result.textwriter.MultipleFilesOutput
Open a new stream of the given name
newTree(DBIDs, Relation<? extends NumberVector>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch.CFTree.Factory
Make a new tree.
newValue - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.AttributeModifier
The new value of the attribute.
newVar(DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
Make a new DBID variable.
newVar(DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new DBID variable.
newVar() - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
Make a new DBID variable.
newVar(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
 
next - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.SteepScanPosition
Variable for accessing.
next() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.SteepScanPosition
Advance to the next entry
next - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.TrivialDBIDFactory
Keep track of the smallest dynamic DBID offset not used.
next() - Method in class de.lmu.ifi.dbs.elki.database.relation.RelationUtil.RelationObjectIterator
 
next() - Method in class de.lmu.ifi.dbs.elki.index.tree.BreadthFirstEnumeration
Returns the next element of this enumeration if this enumeration object has at least one more element to provide.
next() - Method in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceScanner.DirClassIterator
 
next(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.FastNonThreadsafeRandom
 
next(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.Xoroshiro128NonThreadsafeRandom
 
next(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift1024NonThreadsafeRandom
 
next(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift64NonThreadsafeRandom
 
next - Variable in class de.lmu.ifi.dbs.elki.utilities.xml.XMLNodeIterator
Store the next node
next() - Method in class de.lmu.ifi.dbs.elki.utilities.xml.XMLNodeIterator
Return next and advance iterator.
next() - Method in class de.lmu.ifi.dbs.elki.utilities.xml.XMLNodeListIterator
Return next and advance iterator.
next - Variable in class de.lmu.ifi.dbs.elki.visualization.gui.overview.PlotItem.ItmItr
 
next() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.PlotItem.ItmItr
 
nextAllOnesInt(int) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Find the next larger number with all ones.
nextAllOnesLong(long) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Find the next larger number with all ones.
nextClearBit(long, int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the next clear bit.
nextClearBit(long[], int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the next clear bit.
nextclus - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN.Instance
Next cluster number assigned.
nextDouble() - Method in class de.lmu.ifi.dbs.elki.utilities.random.FastNonThreadsafeRandom
 
nextDouble() - Method in class de.lmu.ifi.dbs.elki.utilities.random.Xoroshiro128NonThreadsafeRandom
 
nextDouble() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift1024NonThreadsafeRandom
 
nextDouble() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift64NonThreadsafeRandom
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.bundle.BundleReader
 
nextEvent() - Method in interface de.lmu.ifi.dbs.elki.datasource.bundle.BundleStreamSource
Get the next event
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.bundle.StreamFromBundle
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.AbstractStreamConversionFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.cleaning.DropNaNFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.cleaning.NoMissingValuesFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.cleaning.ReplaceNaNWithRandomFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.cleaning.VectorDimensionalityFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.NoOpFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.selection.ByLabelFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.selection.FirstNStreamFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.selection.RandomSamplingStreamFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ClassLabelFromPatternFilter
 
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.parser.CategorialDataAsNumberVectorParser
 
nextevent - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.ClusteringVectorParser
Event to report next.
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.parser.ClusteringVectorParser
 
nextevent - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.NumberVectorLabelParser
Event to report next.
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.parser.NumberVectorLabelParser
 
nextevent - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.SimplePolygonParser
Event to report next.
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.parser.SimplePolygonParser
 
nextevent - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.SimpleTransactionParser
Event to report next.
nextEvent() - Method in class de.lmu.ifi.dbs.elki.datasource.parser.SimpleTransactionParser
 
nextIndex(int) - Method in class de.lmu.ifi.dbs.elki.utilities.datastructures.unionfind.WeightedQuickUnionInteger
Occupy the next unused index.
nextInt() - Method in class de.lmu.ifi.dbs.elki.utilities.random.FastNonThreadsafeRandom
 
nextInt(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.FastNonThreadsafeRandom
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextInt() - Method in class de.lmu.ifi.dbs.elki.utilities.random.Xoroshiro128NonThreadsafeRandom
 
nextInt(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.Xoroshiro128NonThreadsafeRandom
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextInt() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift1024NonThreadsafeRandom
 
nextInt(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift1024NonThreadsafeRandom
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextInt() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift64NonThreadsafeRandom
 
nextInt(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift64NonThreadsafeRandom
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextIntRefined(int) - Method in class de.lmu.ifi.dbs.elki.utilities.random.FastNonThreadsafeRandom
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextIteration(double[][]) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel.KMeansProcessor
Initialize for a new iteration.
nextLine() - Method in class de.lmu.ifi.dbs.elki.utilities.io.BufferedLineReader
Read the next line.
nextLineExceptComments() - Method in class de.lmu.ifi.dbs.elki.utilities.io.TokenizedReader
Read the next line into the tokenizer.
nextLong() - Method in class de.lmu.ifi.dbs.elki.utilities.random.Xoroshiro128NonThreadsafeRandom
 
nextLong() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift1024NonThreadsafeRandom
 
nextLong() - Method in class de.lmu.ifi.dbs.elki.utilities.random.XorShift64NonThreadsafeRandom
 
nextPageID - Variable in class de.lmu.ifi.dbs.elki.persistent.AbstractStoringPageFile
The last page ID.
nextPartitioning() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation
 
nextPartitioning() - Method in interface de.lmu.ifi.dbs.elki.evaluation.classification.holdout.Holdout
Get the next partitioning of the given holdout.
nextPartitioning() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.LeaveOneOut
 
nextPartitioning() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation
 
nextPartitioning() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation
 
nextPosition(int, int) - Static method in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Helper that is similar to Math.min(a,b), except that negative values are considered "invalid".
nextPow2Int(int) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Find the next power of 2.
nextPow2Int(int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.HeapUtil
Find the next power of 2.
nextPow2Long(long) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Find the next power of 2.
nextRadicalInverse() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.HaltonUniformDistribution
Compute the next radical inverse.
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.AbstractDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.BetaDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.CauchyDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.ChiDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.ConstantDistribution
 
nextRandom() - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.Distribution
Generate a new random value
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExpGammaDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
This method currently uses the naive approach of returning -log(uniform).
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
 
nextRandom(double, double, Random) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
Generate a random value with the generators parameters.
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GeneralizedLogisticAlternateDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GeneralizedLogisticDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GumbelDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.HaltonUniformDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.InverseGaussianDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.KappaDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LaplaceDistribution
This method currently uses the naive approach of returning -log(uniform).
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogisticDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogLogisticDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogNormalDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.PoissonDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.RayleighDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.SkewGeneralizedNormalDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.StudentsTDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.UniformDistribution
 
nextRandom() - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.WeibullDistribution
 
nextSearchItemset(BitVector, int[], int[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.APRIORI
Advance scratch itemset to the next.
nextSep(String, int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.range.ParseIntRanges
Find the next separator.
nextSetBit(long, int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the next set bit.
nextSetBit(long[], int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the next set bit.
nextToken(StreamTokenizer) - Method in class de.lmu.ifi.dbs.elki.datasource.parser.ArffParser
Helper function for token handling.
nf - Variable in class de.lmu.ifi.dbs.elki.algorithm.DependencyDerivator
Number format for output of solution.
nf - Variable in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
Number format for output accuracy.
NF - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Dynamic number formatter, but with language constraint.
nf - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.TooltipScoreVisualization.Parameterizer
Number formatter used for visualization
NF0 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (0 digits) for output purposes.
NF16 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (16 digits) for output purposes.
NF2 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (2 digits) for output purposes.
NF3 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (3 digits) for output purposes.
NF4 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (4 digits) for output purposes.
NF6 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (6 digits) for output purposes.
NF8 - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Number Formatter (8 digits) for output purposes.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation
Holds the number of folds, current fold.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation.Parameterizer
Holds the number of folds.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation
Holds the number of folds, current fold.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation.Parameterizer
Holds the number of folds.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation
Holds the number of folds, current fold.
nfold - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation.Parameterizer
Holds the number of folds.
NFOLD_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation.Parameterizer
Parameter for number of folds.
NFOLD_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation.Parameterizer
Parameter for number of folds.
NFOLD_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation.Parameterizer
Parameter for number of folds.
nmea - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.DiagonalGaussianModel
Temporary storage, to avoid reallocations.
nmea - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.MultivariateGaussianModel
Temporary storage, to avoid reallocations.
nmea - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.SphericalGaussianModel
Temporary storage, to avoid reallocations.
nmea - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
Temporary storage, to avoid reallocations.
nmin - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.ALOCI.ALOCIQuadTree
Maximum fill for a page before splitting
nmin - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.ALOCI
Minimum size for a leaf.
nmin - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.ALOCI.Parameterizer
Neighborhood minimum size
nmin - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOCI
Minimum neighborhood size.
nmin - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOCI.Parameterizer
Minimum neighborhood size.
NMIN_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.ALOCI.Parameterizer
Parameter to specify the minimum neighborhood size
NMIN_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOCI.Parameterizer
Parameter to specify the minimum neighborhood size
nn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut.HilFeature
Heap with the nearest known neighbors
nn_keys - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut.HilFeature
Set representation of the nearest neighbors for faster lookups
NNChain<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical
NNchain clustering algorithm.
NNChain(DistanceFunction<? super O>, Linkage) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.NNChain
Constructor.
NNChain.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical
Parameterization class.
nnChainCore(MatrixParadigm, DBIDArrayMIter, DistanceQuery<O>, PointerHierarchyRepresentationBuilder, Int2ObjectOpenHashMap<ModifiableDBIDs>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.MiniMaxNNChain
Uses NNChain as in "Modern hierarchical, agglomerative clustering algorithms" by Daniel Müllner
nnChainCore(MatrixParadigm, PointerHierarchyRepresentationBuilder) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.NNChain
Uses NNChain as in "Modern hierarchical, agglomerative clustering algorithms" by Daniel Müllner
NNDescent<O> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
NN-desent (also known as KNNGraph) is an approximate nearest neighbor search algorithm beginning with a random sample, then iteratively refining this sample until.
NNDescent(Relation<O>, DistanceFunction<? super O>, int, RandomFactory, double, double, boolean, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NNDescent
Constructor.
NNDescent.Factory<O> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Index factory.
NNDescent.Factory.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Parameterization class
NO_EXPORT_ATTRIBUTE - Static variable in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPlot
Attribute to block export of element.
NO_PENALIZE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette.Parameterizer
Do not penalize ignored noise.
NO_PENALIZE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria.Parameterizer
Do not penalize ignored noise.
NO_VALUE - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.UpdatableHeap
Constant for "not in heap".
NO_VALUE - Static variable in class de.lmu.ifi.dbs.elki.visualization.svg.SVGUtil
Key not found value.
NoAutomaticEvaluation - Class in de.lmu.ifi.dbs.elki.evaluation
No-operation evaluator, that only serves the purpose of explicitely disabling the default value of AutomaticEvaluation, if you do not want evaluation to run.
NoAutomaticEvaluation() - Constructor for class de.lmu.ifi.dbs.elki.evaluation.NoAutomaticEvaluation
 
NoAutomaticEvaluation.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation
Parameterization class
nocenter - Variable in class de.lmu.ifi.dbs.elki.utilities.referencepoints.StarBasedReferencePoints
Exclude the center vector.
nocenter - Variable in class de.lmu.ifi.dbs.elki.utilities.referencepoints.StarBasedReferencePoints.Parameterizer
NOCENTER_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.referencepoints.StarBasedReferencePoints.Parameterizer
Parameter to specify the grid resolution.
nocorrect - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi
Disable the predecessor correction.
nocorrect - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.Parameterizer
 
NOCORRECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.Parameterizer
Parameter to disable the correction function.
Node(int, double[], int, int, List<ALOCI.Node>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.ALOCI.Node
Constructor.
Node(Parameter<?>, String, int, int) - Constructor for class de.lmu.ifi.dbs.elki.gui.util.DynamicParameters.Node
Constructor.
Node(DBIDRef, double, double) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.CoverTree.Node
Constructor.
Node(DBIDRef, double, double, DoubleDBIDList) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.CoverTree.Node
Constructor for leaf node.
Node(DBIDRef, double) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.SimplifiedCoverTree.Node
Constructor.
Node(DBIDRef, double, DoubleDBIDList) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.SimplifiedCoverTree.Node
Constructor for leaf node.
Node<E extends Entry> - Interface in de.lmu.ifi.dbs.elki.index.tree
This interface defines the common requirements of nodes in an index structure.
Node(int, List<CompactCircularMSTLayout3DPC.Node>) - Constructor for class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.CompactCircularMSTLayout3DPC.Node
Constructor.
Node(int, List<MultidimensionalScalingMSTLayout3DPC.Node>) - Constructor for class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.MultidimensionalScalingMSTLayout3DPC.Node
Constructor.
Node(int, List<SimpleCircularMSTLayout3DPC.Node>) - Constructor for class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.SimpleCircularMSTLayout3DPC.Node
Constructor.
nodeAddition(double[][], ChengAndChurch.BiclusterCandidate) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering.ChengAndChurch
Algorithm 3 of Cheng and Church.
NodeAppendChild - Class in de.lmu.ifi.dbs.elki.visualization.batikutil
Runnable wrapper for appending XML-Elements to existing Elements.
NodeAppendChild(Element, Element) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeAppendChild
Trivial constructor.
NodeAppendChild(Element, Element, SVGPlot, String) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeAppendChild
Full constructor.
NodeArrayAdapter - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util
Access the entries of a node as array-like.
NodeArrayAdapter() - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util.NodeArrayAdapter
Constructor.
nodeID - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query.MTreeSearchCandidate
Page id
nodelist - Variable in class de.lmu.ifi.dbs.elki.utilities.xml.XMLNodeListIterator
The NodeList to iterate over.
NodeReplaceAllChildren - Class in de.lmu.ifi.dbs.elki.visualization.batikutil
Runnable wrapper to replace all children of a given node.
NodeReplaceAllChildren(Element, Element) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeReplaceAllChildren
Trivial constructor.
NodeReplaceAllChildren(Element, Element, SVGPlot, String) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeReplaceAllChildren
Full constructor.
NodeReplaceByID - Class in de.lmu.ifi.dbs.elki.visualization.batikutil
This helper class will replace a node in an SVG plot.
NodeReplaceByID(Element, SVGPlot, String) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeReplaceByID
Setup a SVG node replacement.
nodes - Variable in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
Number of nodes in the tree (statistics only).
nodes - Variable in class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout
Nodes
nodeSplitter - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.RTreeSettings
The split strategy.
NodeSubstitute - Class in de.lmu.ifi.dbs.elki.visualization.batikutil
This helper class will replace a node in an SVG plot.
NodeSubstitute(Element, Element) - Constructor for class de.lmu.ifi.dbs.elki.visualization.batikutil.NodeSubstitute
Setup a SVG node replacement.
nofill - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionCubeVisualization.Parameterizer
Fill parameter.
NOFILL_ID - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionCubeVisualization.Parameterizer
Flag for half-transparent filling of selection cubes.
noIncrementalRedraw - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer.Instance
Flag to disallow an incremental redraw
noInitialNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NNDescent.Factory
set initial neighbors?
noInitialNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NNDescent.Factory.Parameterizer
No initial neighbors
noInitialNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.NNDescent
Do not use initial neighbors
noise - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
Holds a set of noise.
NOISE - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Instance
Noise IDs
NOISE - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.LSDBC
Constants used internally.
NOISE - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.GriDBSCAN.Instance
Noise IDs.
noise - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
Holds a set of noise.
noise - Variable in class de.lmu.ifi.dbs.elki.data.Cluster
Noise?
noise1 - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
Noise flags
noise2 - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
Noise flags
NOISE_FLAG_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMinusMinus.Parameterizer
Flag to produce a "noise" cluster, instead of assigning them to the nearest neighbor.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering.Parameterizer
Parameter to specify the pattern to recognize noise clusters by.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByModelClustering.Parameterizer
Parameter to specify the pattern to recognize noise clusters with.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering.Parameterizer
Parameter flag for special noise handling.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex.Parameterizer
Parameter for the option, how noise should be treated.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs.Parameterizer
Parameter for the option, how noise should be treated.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin.Parameterizer
Parameter for the option, how noise should be treated.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex.Parameterizer
Parameter for the option, how noise should be treated.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette.Parameterizer
Parameter to treat noise as a single cluster.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors.Parameterizer
Parameter to treat noise as a single cluster.
NOISE_ID - Static variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria.Parameterizer
Parameter for the option, how noise should be treated.
noiseDim - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.CASH
Holds the dimensionality for noise.
noisedistribution - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.PerturbationFilter
Nature of the noise distribution.
NoiseDistribution() - Constructor for enum de.lmu.ifi.dbs.elki.datasource.filter.transform.PerturbationFilter.NoiseDistribution
 
noisedistribution - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.PerturbationFilter.Parameterizer
The option which nature of noise distribution to choose.
NOISEDISTRIBUTION_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.PerturbationFilter.Parameterizer
Parameter for selecting the noise distribution.
noiseFlag - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMinusMinus
Create a noise cluster, otherwise assign to the nearest cluster.
noiseFlag - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMinusMinus.Parameterizer
Noise cluster flag.
noiseHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
Option for noise handling.
noiseHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs.Parameterizer
Option, how noise should be treated.
noiseHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
Option for noise handling.
noiseHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex.Parameterizer
Option, how noise should be treated.
NoiseHandling - Enum in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
Options for handling noise in internal measures.
NoiseHandling() - Constructor for enum de.lmu.ifi.dbs.elki.evaluation.clustering.internal.NoiseHandling
 
noiseOption - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.SilhouetteOutlierDetection
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.SilhouetteOutlierDetection.Parameterizer
Noise handling
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex.Parameterizer
Option, how noise should be treated.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin.Parameterizer
Option, how noise should be treated.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette.Parameterizer
Noise handling
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette.Parameterizer
Option, how noise should be treated.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
Handling of Noise clusters
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors.Parameterizer
Handling of noise clusters.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
Option for noise handling.
noiseOption - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria.Parameterizer
Option, how noise should be treated.
noisepat - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering.Parameterizer
Pattern to recognize noise clusters by.
noisepat - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByModelClustering.Parameterizer
Pattern to recognize noise clusters with
noisepattern - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering
Pattern to recognize noise clusters by.
noisepattern - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByModelClustering
Pattern to recognize noise clusters with.
noiseSpecialHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
Apply special handling to noise "clusters".
noiseSpecialHandling - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering.Parameterizer
Apply special handling to noise "clusters".
NOKEEPMED_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARA.Parameterizer
Draw independent samples.
NOKEEPMED_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.FastCLARA.Parameterizer
Draw independent samples.
NOLOG_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory.Parameterizer
Parameter for nolog
nominateNeighbors(DBIDIter, DBIDArrayIter, double[], double, WritableDoubleDataStore) - Static method in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.SOS
Vote for neighbors not being outliers.
nominateNeighbors(DBIDIter, DBIDArrayIter, double[], double, WritableDoubleDataStore) - Static method in class de.lmu.ifi.dbs.elki.algorithm.outlier.intrinsic.ISOS
Vote for neighbors not being outliers.
NoMissingValuesFilter - Class in de.lmu.ifi.dbs.elki.datasource.filter.cleaning
A filter to remove entries that have missing values.
NoMissingValuesFilter() - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.cleaning.NoMissingValuesFilter
Constructor.
NoMissingValuesFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.cleaning
Parameterization class.
NON_NEGATIVE - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.HellingerDistanceFunction
Assertion error message.
NON_SPATIAL_DISTANCE_FUNCTION_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractDistanceBasedSpatialOutlier.Parameterizer
Parameter to specify the non spatial distance function to use
NONBREAKING_SPACE - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.FormatUtil
Non-breaking unicode space character.
NonFlatRStarTree<N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,S extends RTreeSettings> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants
Abstract superclass for all non-flat R*-Tree variants.
NonFlatRStarTree(PageFile<N>, S) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.NonFlatRStarTree
Constructor.
nonindexedClasses() - Static method in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceScanner
Get a list with all classes in the working folder (not including jars!)
NonNumericFeaturesException - Exception in de.lmu.ifi.dbs.elki.datasource.filter.normalization
An exception to signal the encounter of non numeric features where numeric features have been expected.
NonNumericFeaturesException() - Constructor for exception de.lmu.ifi.dbs.elki.datasource.filter.normalization.NonNumericFeaturesException
An exception to signal the encounter of non numeric features where numeric features have been expected.
NonNumericFeaturesException(String) - Constructor for exception de.lmu.ifi.dbs.elki.datasource.filter.normalization.NonNumericFeaturesException
An exception to signal the encounter of non numeric features where numeric features have been expected.
NonNumericFeaturesException(Throwable) - Constructor for exception de.lmu.ifi.dbs.elki.datasource.filter.normalization.NonNumericFeaturesException
An exception to signal the encounter of non numeric features where numeric features have been expected.
NonNumericFeaturesException(String, Throwable) - Constructor for exception de.lmu.ifi.dbs.elki.datasource.filter.normalization.NonNumericFeaturesException
An exception to signal the encounter of non numeric features where numeric features have been expected.
nonSpatialDistanceFunction - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractDistanceBasedSpatialOutlier
The distance function to use
nonZeroPivotSearch(int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
Method for trivial pivot search, searches for non-zero entry.
NoOpFilter - Class in de.lmu.ifi.dbs.elki.datasource.filter
Dummy filter that doesn't do any filtering.
NoOpFilter() - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.NoOpFilter
Constructor.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.LatLngAsECEFIndex.Factory
Disable refinement of distances.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.LatLngAsECEFIndex.Factory.Parameterizer
Disable refinement of distances.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.LngLatAsECEFIndex.Factory.Parameterizer
Disable refinement of distances.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory
Disable refinement of distances.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory.Parameterizer
Disable refinement of distances.
norefine - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex
Refinement disable flag.
norm - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.instancewise.LengthNormalization
Norm to use.
norm - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.instancewise.LengthNormalization.Parameterizer
Norm to use.
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.MahalanobisDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.MatrixWeightedQuadraticDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPIntegerNormDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPNormDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.ManhattanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MaximumDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MinimumDistanceFunction
 
norm(SparseNumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SparseEuclideanDistanceFunction
 
norm(SparseNumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SparseLPNormDistanceFunction
 
norm(SparseNumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SparseManhattanDistanceFunction
 
norm(SparseNumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SparseMaximumDistanceFunction
 
norm(SparseNumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SparseSquaredEuclideanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedEuclideanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedLPNormDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedManhattanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedMaximumDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedSquaredEuclideanDistanceFunction
 
Norm<O> - Interface in de.lmu.ifi.dbs.elki.distance.distancefunction
Abstract interface for a mathematical norm.
norm(O) - Method in interface de.lmu.ifi.dbs.elki.distance.distancefunction.Norm
Compute the norm of object obj.
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.OnedimensionalDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceEuclideanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceLPNormDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceManhattanDistanceFunction
 
norm(NumberVector) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.SubspaceMaximumDistanceFunction
 
norm - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeKNNQuery
Norm to use.
norm - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeRangeQuery
Norm to use.
norm - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeKNNQuery
Norm to use.
norm - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.SmallMemoryKDTree.KDTreeRangeQuery
Norm to use.
norm2() - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.SingularValueDecomposition
Two norm
NORM_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.instancewise.LengthNormalization.Parameterizer
Option ID for normalization norm.
NormalDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Gaussian distribution aka normal distribution
NormalDistribution(double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Constructor for Gaussian distribution
NormalDistribution(double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Constructor for Gaussian distribution
NormalDistribution(double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
Constructor for Gaussian distribution
NormalDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Parameterization class
Normalization<O> - Interface in de.lmu.ifi.dbs.elki.datasource.filter.normalization
Normalization performs a normalization on a set of feature vectors and is capable to transform a set of feature vectors to the original attribute ranges.
normalize(int, double) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseMADNormalization
Normalize a single dimension.
normalize(int, double) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseMeanNormalization
Normalize a single dimension.
normalize(int, double) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseVarianceNormalization
Normalize a single dimension.
normalize - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
Normalize.
normalize - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser.Parameterizer
Normalization flag.
normalize(double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Normalizes v1 to the length of 1.0.
normalize - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
Store flag to Normalize data before curve fitting.
normalize - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling.Parameterizer
Store flag to Normalize data before curve fitting.
NORMALIZE_FLAG - Static variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser.Parameterizer
Option ID for normalization.
NORMALIZE_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling.Parameterizer
Normalization flag.
normalizeColumns(double[][]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Normalizes the columns of this matrix to length of 1.0.
NORMALIZED_SIMILARITY - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.AbstractSimilarityAdapter.Parameterizer
Normalized similarity functions
NormalizedLevenshteinDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.strings
Levenshtein distance on strings, normalized by string length.
NormalizedLevenshteinDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.strings.NormalizedLevenshteinDistanceFunction
Deprecated.
NormalizedLevenshteinDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.strings
Parameterization class.
NormalizedPrimitiveSimilarityFunction<O> - Interface in de.lmu.ifi.dbs.elki.distance.similarityfunction
Marker interface for similarity functions working on primitive objects, and limited to the 0-1 value range.
NormalizedSimilarityFunction<O> - Interface in de.lmu.ifi.dbs.elki.distance.similarityfunction
Marker interface to signal that the similarity function is normalized to produce values in the range of [0:1].
normalizedVariationOfInformation() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
Get the normalized variation of information (normalized, 0 = equal) NVI = 1 - NMI_Joint X.
normalizeEquals(double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Normalizes v1 to the length of 1.0 in place.
normalizeLMR(double[], int) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.ProbabilityWeightedMoments
Normalize the moments
normalizeScore(double) - Method in class de.lmu.ifi.dbs.elki.result.outlier.BasicOutlierScoreMeta
 
normalizeScore(double) - Method in class de.lmu.ifi.dbs.elki.result.outlier.InvertedOutlierScoreMeta
 
normalizeScore(double) - Method in interface de.lmu.ifi.dbs.elki.result.outlier.OutlierScoreMeta
Return a normalized value of the outlier score.
normalizeScore(double) - Method in class de.lmu.ifi.dbs.elki.result.outlier.ProbabilisticOutlierScore
 
NormalLevenbergMarquardtKDEEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Distribution parameter estimation using Levenberg-Marquardt iterative optimization and a kernel density estimation.
NormalLevenbergMarquardtKDEEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLevenbergMarquardtKDEEstimator
Constructor.
NormalLevenbergMarquardtKDEEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
NormalLMMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimate the parameters of a normal distribution using the method of L-Moments (LMM).
NormalLMMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLMMEstimator
Constructor.
NormalLMMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
NormalMADEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Estimator using Medians.
NormalMADEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMADEstimator
Constructor.
NormalMADEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
NormalMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Naive maximum-likelihood estimations for the normal distribution using mean and sample variance.
NormalMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMOMEstimator
Private constructor, use static instance!
NormalMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
Parameterization class.
normAngle(double) - Static method in class de.lmu.ifi.dbs.elki.math.MathUtil
Normalize an angle to [0:2pi[
normF(double[][]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
Frobenius norm
noself - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel.LOFProcessor
Exclude object itself from computation.
NoSupportedDataTypeException - Exception in de.lmu.ifi.dbs.elki.data.type
Exception thrown when no supported data type was found.
NoSupportedDataTypeException(TypeInformation, Collection<TypeInformation>) - Constructor for exception de.lmu.ifi.dbs.elki.data.type.NoSupportedDataTypeException
Constructor.
NoSupportedDataTypeException(String) - Constructor for exception de.lmu.ifi.dbs.elki.data.type.NoSupportedDataTypeException
Constructor with string message.
NOT_A_NUMBER - Static variable in class de.lmu.ifi.dbs.elki.utilities.io.ParseUtil
Preallocated exceptions.
NOT_SELECTED - Static variable in interface de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering.ChengAndChurch.CellVisitor
Different modes of operation.
NOT_SET - Static variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.Flag
Constant indicating that the flag is not set.
notifyFactories(Object) - Method in class de.lmu.ifi.dbs.elki.visualization.VisualizerContext
Notify factories of a change.
NotImplementedException - Exception in de.lmu.ifi.dbs.elki.utilities.exceptions
Exception thrown when a particular code path was not yet implemented.
NotImplementedException(String, Throwable) - Constructor for exception de.lmu.ifi.dbs.elki.utilities.exceptions.NotImplementedException
Constructor.
NotImplementedException(String) - Constructor for exception de.lmu.ifi.dbs.elki.utilities.exceptions.NotImplementedException
Constructor.
NotImplementedException() - Constructor for exception de.lmu.ifi.dbs.elki.utilities.exceptions.NotImplementedException
"Not implemented yet" exception.
nozeros - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceQuantileSampler
Flag to ignore zero distances (recommended with many duplicates).
nozeros - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceQuantileSampler.Parameterizer
Flag to ignore zero distances (recommended with many duplicates).
nozeros - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling
Ignore zero values
nozeros - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling.Parameterizer
Ignore zero values
NOZEROS_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceQuantileSampler.Parameterizer
Flag to ignore zero distances (recommended with many duplicates).
NOZEROS_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierLinearScaling.Parameterizer
Flag to use ignore zeros when computing the min and max.
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Instance
The neighborhood predicate
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN
The neighborhood predicate factory.
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Parameterizer
Neighborhood predicate.
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN.Instance
The neighborhood predicate
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN
The neighborhood predicate factory.
npred - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN.Parameterizer
Neighborhood predicate.
npredf - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier
Our predicate to obtain the neighbors
npredf - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier.Parameterizer
The predicate to obtain the neighbors.
npreds - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel.ParallelGeneralizedDBSCAN.Instance
Factory for neighbor predicates.
nu - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.svm.LibSVMOneClassOutlierDetection
Nu parameter.
nu - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.svm.LibSVMOneClassOutlierDetection.Parameterizer
Nu parameter.
nu - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.StudentsTDistribution.Parameterizer
Parameters.
NU_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.svm.LibSVMOneClassOutlierDetection.Parameterizer
SVM nu parameter
NU_ID - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.StudentsTDistribution.Parameterizer
Degrees of freedom.
NullAlgorithm - Class in de.lmu.ifi.dbs.elki.algorithm
Null Algorithm, which does nothing.
NullAlgorithm() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.NullAlgorithm
Constructor.
nullIndividuum(int) - Static method in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.Individuum
Create a "null" individuum (full space).
NULLMSG - Variable in class de.lmu.ifi.dbs.elki.logging.ErrorFormatter
Null error message.
NULLPOSTFIX - Static variable in class de.lmu.ifi.dbs.elki.result.textwriter.naming.SimpleEnumeratingScheme
This is the postfix added to the first cluster, which will be removed when there is only one cluster of this name.
num - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.util.Core
Cluster number
num - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging
Number of instances to use.
num - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging.Parameterizer
Number of instances to use.
NUM_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging.Parameterizer
Parameter to specify the number of instances to use in the ensemble.
NUM_PRECISION - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.BetaDistribution
Numerical precision to use
NUM_PRECISION - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
Numerical precision to use (data type dependent!)
NUMBER_OF_NEIGHBORS_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory
Parameter to indicate the number of neighbors to be taken into account for the shared-nearest-neighbor similarity.
NUMBER_PATTERN - Static variable in class de.lmu.ifi.dbs.elki.datasource.parser.CSVReaderFormat
A pattern catching most numbers that can be parsed using Double.parseDouble: Some examples: 1 1.
NUMBER_SELECTED_ATTRIBUTES_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter.Parameterizer
Parameter for the desired cardinality of the subset of attributes selected for projection.
NUMBER_VECTOR_FIELD - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
Input type for algorithms that require number vector fields.
NUMBER_VECTOR_FIELD_1D - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
Type request for two-dimensional number vectors
NUMBER_VECTOR_FIELD_2D - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
Type request for two-dimensional number vectors
NUMBER_VECTOR_VARIABLE_LENGTH - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
Number vectors of variable length.
NumberArrayAdapter<N extends java.lang.Number,A> - Interface in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
Adapter for arrays of numbers, to avoid boxing.
NUMBERLISTADAPTER - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ArrayLikeUtil
Static instance for lists of numbers.
numberListAdapter(List<? extends T>) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ArrayLikeUtil
Cast the static instance.
NumberListArrayAdapter<T extends java.lang.Number> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
Static adapter class to use a List in an array of number API.
NumberListArrayAdapter() - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.NumberListArrayAdapter
Constructor.
numberOfBuckets - Variable in class de.lmu.ifi.dbs.elki.index.lsh.InMemoryLSHIndex.Instance
Number of buckets to use.
numberOfBuckets - Variable in class de.lmu.ifi.dbs.elki.index.lsh.InMemoryLSHIndex
Number of buckets to use.
numberOfBuckets - Variable in class de.lmu.ifi.dbs.elki.index.lsh.InMemoryLSHIndex.Parameterizer
Number of buckets to use.
numberOfFeatureVectors() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique.CLIQUEUnit
Returns the number of feature vectors this unit contains.
numberOfFreeParameters(Relation<? extends NumberVector>, Clustering<? extends MeanModel>) - Static method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality.AbstractKMeansQualityMeasure
Compute the number of free parameters.
numberOfLeadingZeros(long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros.
numberOfLeadingZeros(long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros; 64 if all zero Note: this the same as Long.numberOfLeadingZeros(long).
numberOfLeadingZeros(int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros; 32 if all zero Note: this the same as Integer.numberOfLeadingZeros(int).
numberOfLeadingZerosSigned(long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros.
numberOfLeadingZerosSigned(long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros; -1 if all zero Note: this has different semantics to Long.numberOfLeadingZeros(long) when the number is 0.
numberOfLeadingZerosSigned(int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of leading zeros; -1 if all zero Note: this has different semantics to Long.numberOfLeadingZeros(long) when the number is 0.
numberOfNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory
Holds the number of nearest neighbors to be used.
numberOfNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor.Factory.Parameterizer
Holds the number of nearest neighbors to be used.
numberOfNeighbors - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.snn.SharedNearestNeighborPreprocessor
Holds the number of nearest neighbors to be used.
numberOfNeighbours - Variable in class de.lmu.ifi.dbs.elki.algorithm.projection.NearestNeighborAffinityMatrixBuilder
Number of neighbors to use.
numberOfPartitions() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.DisjointCrossValidation
 
numberOfPartitions() - Method in interface de.lmu.ifi.dbs.elki.evaluation.classification.holdout.Holdout
How many partitions to test.
numberOfPartitions() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.LeaveOneOut
 
numberOfPartitions() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.RandomizedCrossValidation
 
numberOfPartitions() - Method in class de.lmu.ifi.dbs.elki.evaluation.classification.holdout.StratifiedCrossValidation
 
numberOfTrailingZeros(long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of trailing zeros.
numberOfTrailingZeros(long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of trailing zeros.
numberOfTrailingZeros(int) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of trailing zeros.
numberOfTrailingZerosSigned(long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of trailing zeros.
numberOfTrailingZerosSigned(long) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.BitsUtil
Find the number of trailing zeros.
NumberParameter<THIS extends NumberParameter<THIS,T>,T extends java.lang.Number> - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters
Abstract class for defining a number parameter.
NumberParameter(OptionID, T) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.NumberParameter
Constructs a number parameter with the given optionID and default Value.
NumberParameter(OptionID, boolean) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.NumberParameter
Constructs a number parameter with the given optionID and optional flag.
NumberParameter(OptionID) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.NumberParameter
Constructs a number parameter with the given optionID.
numberSharedLevels(long[], long[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.distance.HilOut.HilbertFeatures
Number of levels shared
NumberVector - Interface in de.lmu.ifi.dbs.elki.data
Interface NumberVector defines the methods that should be implemented by any Object that is element of a real vector space of type N.
NumberVector.Factory<V extends NumberVector> - Interface in de.lmu.ifi.dbs.elki.data
Factory API for this feature vector.
NUMBERVECTORADAPTER - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ArrayLikeUtil
Use a number vector in the array API.
NumberVectorAdapter - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
Adapter to use a feature vector as an array of features.
NumberVectorAdapter() - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.NumberVectorAdapter
Constructor.
NumberVectorDistanceFunction<O> - Interface in de.lmu.ifi.dbs.elki.distance.distancefunction
Base interface for the common case of distance functions defined on numerical vectors.
NumberVectorFeatureSelectionFilter<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.datasource.filter.transform
Parser to project the ParsingResult obtained by a suitable base parser onto a selected subset of attributes.
NumberVectorFeatureSelectionFilter(long[]) - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorFeatureSelectionFilter
Constructor.
NumberVectorFeatureSelectionFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.transform
Parameterization class.
NumberVectorLabelParser<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.datasource.parser
Parser for a simple CSV type of format, with columns separated by the given pattern (default: whitespace).
NumberVectorLabelParser(CSVReaderFormat, long[], NumberVector.Factory<V>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.parser.NumberVectorLabelParser
Constructor.
NumberVectorLabelParser(NumberVector.Factory<V>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.parser.NumberVectorLabelParser
Constructor with defaults.
NumberVectorLabelParser(Pattern, String, Pattern, long[], NumberVector.Factory<V>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.parser.NumberVectorLabelParser
Constructor.
NumberVectorLabelParser.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.datasource.parser
Parameterization class.
NumberVectorRandomFeatureSelectionFilter<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.datasource.filter.transform
Parser to project the ParsingResult obtained by a suitable base parser onto a randomly selected subset of attributes.
NumberVectorRandomFeatureSelectionFilter(int, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter
Constructor.
NumberVectorRandomFeatureSelectionFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.transform
Parameterization class.
numbin - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
Number of bins to use in sampling.
numbin - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
Number of bins to use in sampling.
numbins - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality
Number of bins to use.
numbins - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality.Parameterizer
Number of bins to use.
numbins - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.RankingQualityHistogram
Number of bins to use.
numbins - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.RankingQualityHistogram.Parameterizer
Number of bins.
numc - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.Rec
Number of parents, number of children.
numCandidates - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.insert.ApproximativeLeastOverlapInsertionStrategy
Number of candidates to consider
numCandidates - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.insert.ApproximativeLeastOverlapInsertionStrategy.Parameterizer
The number of candidates to use
numchildren - Variable in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
Key, weight, and number of children.
numChildren(O) - Method in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
 
numChildren(O) - Method in interface de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.Hierarchy
Get number of children
numChildren() - Method in class de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.AbstractLayout3DPC.AbstractNode
 
numChildren() - Method in interface de.lmu.ifi.dbs.elki.visualization.parallel3d.layout.Layout.Node
Get the number of children.
numCl - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ClustersWithNoiseExtraction
Minimum number of clusters.
numCl - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ClustersWithNoiseExtraction.Parameterizer
Minimum number of clusters.
numclusters - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments.Segments
Number of Clusters for each clustering
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering1
Threshold, how many clusters to extract.
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering1.Parameterizer
Desired number of clusters.
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering2
Threshold, how many clusters to extract.
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering2.Parameterizer
Desired number of clusters.
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering3
Threshold, how many clusters to extract.
numclusters - Variable in class tutorial.clustering.NaiveAgglomerativeHierarchicalClustering3.Parameterizer
Desired number of clusters.
numelems - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
Number of all elements.
numEntries - Variable in class de.lmu.ifi.dbs.elki.index.tree.AbstractNode
The number of entries in this node.
NumericalFeatureSelection<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.data.projection
Projection class for number vectors.
NumericalFeatureSelection(int[]) - Constructor for class de.lmu.ifi.dbs.elki.data.projection.NumericalFeatureSelection
Constructor.
NumericalFeatureSelection(BitSet) - Constructor for class de.lmu.ifi.dbs.elki.data.projection.NumericalFeatureSelection
Constructor.
NumericalFeatureSelection.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.data.projection
Parameterization class.
numfit - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.LevenbergMarquardtMethod
Number of parameters to fit
numLines() - Method in class de.lmu.ifi.dbs.elki.result.EvaluationResult
Number of lines recommended for display.
numlocal - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARANS
Number of samples to draw (i.e. restarts).
numlocal - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARANS.Parameterizer
Number of restarts to do.
numObjects() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.CASHInterval
Returns the number of objects associated with this interval.
nump - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.Rec
Number of parents, number of children.
numparams - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.LevenbergMarquardtMethod
Number of parameters
numParents(O) - Method in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
 
numParents(O) - Method in interface de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.Hierarchy
Get number of (direct) parents
numpart - Variable in class de.lmu.ifi.dbs.elki.index.vafile.PartialVAFile.Factory
Number of partitions.
numpart - Variable in class de.lmu.ifi.dbs.elki.index.vafile.PartialVAFile.Factory.Parameterizer
Number of partitions.
numpart - Variable in class de.lmu.ifi.dbs.elki.index.vafile.VAFile.Factory
Number of partitions.
numpart - Variable in class de.lmu.ifi.dbs.elki.index.vafile.VAFile.Factory.Parameterizer
Number of partitions.
numPoints(Clustering<? extends MeanModel>) - Static method in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality.AbstractKMeansQualityMeasure
Compute the number of points in a given set of clusters (which may be less than the complete data set for X-means!)
numpos - Variable in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorOverThreshold
Number of positive values.
numpos - Variable in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorZero
Number of positive values.
numPositive() - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.DBIDsTest
 
numPositive() - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorOverThreshold
 
numPositive() - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorZero
 
numPositive() - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation.Predicate
Return the number of positive ids.
NUMPROJ_ID - Static variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.AbstractProjectedHashFunctionFamily.Parameterizer
Number of projections to use in each hash function.
NUMPROJ_ID - Static variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.CosineHashFunctionFamily.Parameterizer
Number of projections to use in each hash function.
numrecs - Variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArray
Number of records in the file.
numref - Variable in class de.lmu.ifi.dbs.elki.index.idistance.InMemoryIDistanceIndex
Number of reference points.
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARA
Number of samples to draw (i.e. iterations).
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARA.Parameterizer
Number of samples to draw (i.e. iterations).
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.FastCLARA
Number of samples to draw (i.e. iterations).
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.FastCLARA.Parameterizer
Number of samples to draw (i.e. iterations).
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.RepresentativeUncertainClustering
How many clusterings shall be made for aggregation.
numsamples - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.RepresentativeUncertainClustering.Parameterizer
Field to store parameter the number of samples.
NUMSAMPLES_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.CLARA.Parameterizer
The number of samples to run.
NUMSAMPLES_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.FastCLARA.Parameterizer
The number of samples to run.
NUMSTYLES - Static variable in class de.lmu.ifi.dbs.elki.result.KMLOutputHandler
Number of styles to use (lower reduces rendering complexity a bit)
numterms - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.ClusteringVectorParser
Number of different terms observed.
numterms - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.SimpleTransactionParser
Number of different terms observed.
numterms - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
Number of different terms observed.
numties - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDKNNHeap
Number of element in ties list.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
ELKI version 0.7.5

Copyright © 2019 ELKI Development Team. License information.