public class ExpGammaDistribution extends AbstractDistribution
Modifier and Type | Class and Description |
---|---|
static class |
ExpGammaDistribution.Parameterizer
Parameterization class
|
Modifier and Type | Field and Description |
---|---|
private double |
k
Alpha == k.
|
private double |
shift
Translation offset.
|
private double |
theta
Theta == 1 / Beta.
|
random
Constructor and Description |
---|
ExpGammaDistribution(double k,
double theta,
double shift)
Constructor for Gamma distribution.
|
ExpGammaDistribution(double k,
double theta,
double shift,
java.util.Random random)
Constructor for Gamma distribution.
|
ExpGammaDistribution(double k,
double theta,
double shift,
RandomFactory random)
Constructor for Gamma distribution.
|
Modifier and Type | Method and Description |
---|---|
double |
cdf(double val)
Return the cumulative density function at the given value.
|
static double |
cdf(double x,
double k,
double theta,
double shift)
The CDF, static version.
|
double |
getK() |
double |
getTheta() |
static double |
logcdf(double x,
double k,
double theta,
double shift)
The log CDF, static version.
|
double |
logpdf(double val)
Return the log density of an existing value
|
static double |
logpdf(double x,
double k,
double theta,
double shift)
ExpGamma distribution logPDF
|
double |
nextRandom()
Generate a new random value
|
double |
pdf(double val)
Return the density of an existing value
|
static double |
pdf(double x,
double k,
double theta,
double shift)
ExpGamma distribution PDF (with 0.0 for x < 0)
|
double |
quantile(double val)
Quantile aka probit (for normal) aka inverse CDF (invcdf, cdf^-1) function.
|
static double |
quantile(double p,
double k,
double theta,
double shift)
Compute probit (inverse cdf) for ExpGamma distributions.
|
java.lang.String |
toString()
Simple toString explaining the distribution parameters.
|
private final double k
private final double theta
private final double shift
public ExpGammaDistribution(double k, double theta, double shift, java.util.Random random)
k
- k, alpha aka. "shape" parametertheta
- Theta = 1.0/Beta aka. "scaling" parametershift
- Location offsetrandom
- Random generatorpublic ExpGammaDistribution(double k, double theta, double shift, RandomFactory random)
k
- k, alpha aka. "shape" parametertheta
- Theta = 1.0/Beta aka. "scaling" parametershift
- Location offsetrandom
- Random generatorpublic ExpGammaDistribution(double k, double theta, double shift)
k
- k, alpha aka. "shape" parametertheta
- Theta = 1.0/Beta aka. "scaling" parametershift
- Location offsetpublic double pdf(double val)
Distribution
val
- existing valuepublic double logpdf(double val)
Distribution
val
- existing valuepublic double cdf(double val)
Distribution
val
- existing valuepublic double quantile(double val)
Distribution
val
- Quantile to findpublic double nextRandom()
Distribution
nextRandom
in interface Distribution
nextRandom
in class AbstractDistribution
public java.lang.String toString()
toString
in interface Distribution
toString
in class java.lang.Object
public double getK()
public double getTheta()
public static double cdf(double x, double k, double theta, double shift)
x
- Valuek
- Shape ktheta
- Theta = 1.0/Beta aka. "scaling" parameterpublic static double logcdf(double x, double k, double theta, double shift)
x
- Valuek
- Shape ktheta
- Theta = 1.0/Beta aka. "scaling" parameterpublic static double pdf(double x, double k, double theta, double shift)
x
- query valuek
- Alphatheta
- Theta = 1 / Betapublic static double logpdf(double x, double k, double theta, double shift)
x
- query valuek
- Alphatheta
- Theta = 1 / Betapublic static double quantile(double p, double k, double theta, double shift)
p
- Probabilityk
- k, alpha aka. "shape" parametertheta
- Theta = 1.0/Beta aka. "scaling" parametershift
- Shift parameterCopyright © 2019 ELKI Development Team. License information.