| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
 
 Clustering algorithms are supposed to implement the
  Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation | Affinity Propagation (AP) clustering. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering | Biclustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | Expectation-Maximization clustering algorithm. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel | Parallel versions of Generalized DBSCAN. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch | BIRCH clustering. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction | Extraction of partitional clusterings from hierarchical results. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel | Parallelized implementations of k-means. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.meta | Meta clustering algorithms, that get their result from other clusterings or external sources. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional | Clustering algorithms for one-dimensional data. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.optics | OPTICS family of clustering algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected
 clustering algorithms or subspace clustering algorithms according to the
 classical but somewhat obsolete classification schema of clustering
 algorithms for axis-parallel subspaces. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings
 
 These methods are mostly useful for providing a reference result in
 evaluation. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain | Clustering algorithms for uncertain data. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.clustering | Clustering based outlier detection. | 
| de.lmu.ifi.dbs.elki.evaluation.clustering | Evaluation of clustering results | 
| tutorial.clustering | Classes from the tutorial on implementing a custom k-means variation | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector> | 
| class  | CanopyPreClustering<O>Canopy pre-clustering is a simple preprocessing step for clustering. | 
| class  | DBSCAN<O>Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
 find density-connected sets in a database. | 
| class  | GriDBSCAN<V extends NumberVector>Using Grid for Accelerating Density-Based Clustering. | 
| class  | Leader<O>Leader clustering algorithm. | 
| class  | NaiveMeanShiftClustering<V extends NumberVector>Mean-shift based clustering algorithm. | 
| class  | SNNClustering<O>Shared nearest neighbor clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AffinityPropagationClusteringAlgorithm<O>Cluster analysis by affinity propagation. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractBiclustering<V extends NumberVector,M extends BiclusterModel>Abstract class as a convenience for different biclustering approaches. | 
| class  | ChengAndChurch<V extends NumberVector>Cheng and Church biclustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CASH<V extends NumberVector>The CASH algorithm is a subspace clustering algorithm based on the Hough
 transform. | 
| class  | COPAC<V extends NumberVector>COPAC is an algorithm to partition a database according to the correlation
 dimension of its objects and to then perform an arbitrary clustering
 algorithm over the partitions. | 
| class  | ERiC<V extends NumberVector>Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. | 
| class  | FourC<V extends NumberVector>4C identifies local subgroups of data objects sharing a uniform correlation. | 
| class  | LMCLUSLinear manifold clustering in high dimensional spaces by stochastic search. | 
| class  | ORCLUS<V extends NumberVector>ORCLUS: Arbitrarily ORiented projected CLUSter generation. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | EM<V extends NumberVector,M extends MeanModel>Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
 Mixture Modeling (GMM), with optional MAP regularization. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | GeneralizedDBSCANGeneralized DBSCAN, density-based clustering with noise. | 
| class  | LSDBC<O extends NumberVector>Locally Scaled Density Based Clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ParallelGeneralizedDBSCANParallel version of DBSCAN clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BIRCHLeafClusteringBIRCH-based clustering algorithm that simply treats the leafs of the CFTree
 as clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractCutDendrogramAbstract base class for extracting clusters from dendrograms. | 
| class  | ClustersWithNoiseExtractionExtraction of a given number of clusters with a minimum size, and noise. | 
| class  | CutDendrogramByHeightExtract a flat clustering from a full hierarchy, represented in pointer form. | 
| class  | CutDendrogramByNumberOfClustersExtract a flat clustering from a full hierarchy, represented in pointer form. | 
| class  | HDBSCANHierarchyExtractionExtraction of simplified cluster hierarchies, as proposed in HDBSCAN. | 
| class  | SimplifiedHierarchyExtractionExtraction of simplified cluster hierarchies, as proposed in HDBSCAN. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | KMeans<V extends NumberVector,M extends Model>Some constants and options shared among kmeans family algorithms. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractKMeans<V extends NumberVector,M extends Model>Abstract base class for k-means implementations. | 
| class  | BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>Run K-Means multiple times, and keep the best run. | 
| class  | CLARA<V>Clustering Large Applications (CLARA) is a clustering method for large data
 sets based on PAM, partitioning around medoids ( KMedoidsPAM) based on
 sampling. | 
| class  | CLARANS<V>CLARANS: a method for clustering objects for spatial data mining
 is inspired by PAM (partitioning around medoids,  KMedoidsPAM)
 and CLARA and also based on sampling. | 
| class  | FastCLARA<V>Clustering Large Applications (CLARA) with the  KMedoidsFastPAMimprovements, to increase scalability in the number of clusters. | 
| class  | FastCLARANS<V>A faster variation of CLARANS, that can explore O(k) as many swaps at a
 similar cost by considering all medoids for each candidate non-medoid. | 
| class  | KMeansAnnulus<V extends NumberVector>Annulus k-means algorithm. | 
| class  | KMeansBisecting<V extends NumberVector,M extends MeanModel>The bisecting k-means algorithm works by starting with an initial
 partitioning into two clusters, then repeated splitting of the largest
 cluster to get additional clusters. | 
| class  | KMeansCompare<V extends NumberVector>Compare-Means: Accelerated k-means by exploiting the triangle inequality and
 pairwise distances of means to prune candidate means. | 
| class  | KMeansElkan<V extends NumberVector>Elkan's fast k-means by exploiting the triangle inequality. | 
| class  | KMeansExponion<V extends NumberVector>Newlings's exponion k-means algorithm, exploiting the triangle inequality. | 
| class  | KMeansHamerly<V extends NumberVector>Hamerly's fast k-means by exploiting the triangle inequality. | 
| class  | KMeansLloyd<V extends NumberVector>The standard k-means algorithm, using bulk iterations and commonly attributed
 to Lloyd and Forgy (independently). | 
| class  | KMeansMacQueen<V extends NumberVector>The original k-means algorithm, using MacQueen style incremental updates;
 making this effectively an "online" (streaming) algorithm. | 
| class  | KMeansMinusMinus<V extends NumberVector>k-means--: A Unified Approach to Clustering and Outlier Detection. | 
| class  | KMeansSimplifiedElkan<V extends NumberVector>Simplified version of Elkan's k-means by exploiting the triangle inequality. | 
| class  | KMeansSort<V extends NumberVector>Sort-Means: Accelerated k-means by exploiting the triangle inequality and
 pairwise distances of means to prune candidate means (with sorting). | 
| class  | KMediansLloyd<V extends NumberVector>k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
 of the more complicated approach suggested by Kaufman and Rousseeuw (see
  KMedoidsPAMinstead). | 
| class  | KMedoidsFastPAM<V>FastPAM: An improved version of PAM, that is usually O(k) times faster. | 
| class  | KMedoidsFastPAM1<V>FastPAM1: A version of PAM that is O(k) times faster, i.e., now in O((n-k)²). | 
| class  | KMedoidsPAM<V>The original Partitioning Around Medoids (PAM) algorithm or k-medoids
 clustering, as proposed by Kaufman and Rousseeuw in "Clustering by means of
 Medoids". | 
| class  | KMedoidsPAMReynolds<V>The Partitioning Around Medoids (PAM) algorithm with some additional
 optimizations proposed by Reynolds et al. | 
| class  | KMedoidsPark<V>A k-medoids clustering algorithm, implemented as EM-style bulk algorithm. | 
| class  | SingleAssignmentKMeans<V extends NumberVector>Pseudo-k-Means variations, that assigns each object to the nearest center. | 
| class  | XMeans<V extends NumberVector,M extends MeanModel>X-means: Extending K-means with Efficient Estimation on the Number of
 Clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ParallelLloydKMeans<V extends NumberVector>Parallel implementation of k-Means clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ExternalClusteringRead an external clustering result from a file, such as produced by
  ClusteringVectorDumper. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KNNKernelDensityMinimaClustering<V extends NumberVector>Cluster one-dimensional data by splitting the data set on local minima after
 performing kernel density estimation. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OPTICSXiExtract clusters from OPTICS Plots using the original Xi extraction. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | SubspaceClusteringAlgorithm<M extends SubspaceModel>Interface for subspace clustering algorithms that use a model derived from
  SubspaceModel, that can then be post-processed for outlier detection. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CLIQUEImplementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. | 
| class  | DiSH<V extends NumberVector>Algorithm for detecting subspace hierarchies. | 
| class  | DOC<V extends NumberVector>DOC is a sampling based subspace clustering algorithm. | 
| class  | FastDOC<V extends NumberVector>The heuristic variant of the DOC algorithm, FastDOC
 
 Reference:
 
 C. | 
| class  | P3C<V extends NumberVector>P3C: A Robust Projected Clustering Algorithm. | 
| class  | PreDeCon<V extends NumberVector>PreDeCon computes clusters of subspace preference weighted connected points. | 
| class  | PROCLUS<V extends NumberVector>The PROCLUS algorithm, an algorithm to find subspace clusters in high
 dimensional spaces. | 
| class  | SUBCLU<V extends NumberVector>Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelClusteringPseudo clustering using labels. | 
| class  | ByLabelHierarchicalClusteringPseudo clustering using labels. | 
| class  | ByLabelOrAllInOneClusteringTrivial class that will try to cluster by label, and fall back to an
 "all-in-one" clustering. | 
| class  | ByModelClusteringPseudo clustering using annotated models. | 
| class  | TrivialAllInOneTrivial pseudo-clustering that just considers all points to be one big
 cluster. | 
| class  | TrivialAllNoiseTrivial pseudo-clustering that just considers all points to be noise. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CenterOfMassMetaClustering<C extends Clustering<?>>Center-of-mass meta clustering reduces uncertain objects to their center of
 mass, then runs a vector-oriented clustering algorithm on this data set. | 
| class  | CKMeansRun k-means on the centers of each uncertain object. | 
| class  | FDBSCANFDBSCAN is an adaption of DBSCAN for fuzzy (uncertain) objects. | 
| class  | RepresentativeUncertainClusteringRepresentative clustering of uncertain data. | 
| class  | UKMeansUncertain K-Means clustering, using the average deviation from the center. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected ClusteringAlgorithm<C> | CenterOfMassMetaClustering. innerThe algorithm to be wrapped and run. | 
| protected ClusteringAlgorithm<C> | CenterOfMassMetaClustering.Parameterizer. innerField to store the algorithm. | 
| protected ClusteringAlgorithm<?> | RepresentativeUncertainClustering. metaAlgorithmThe algorithm for meta-clustering. | 
| protected ClusteringAlgorithm<?> | RepresentativeUncertainClustering.Parameterizer. metaAlgorithmField to store the inner algorithm for meta-clustering | 
| protected ClusteringAlgorithm<?> | RepresentativeUncertainClustering. samplesAlgorithmThe algorithm to be wrapped and run. | 
| protected ClusteringAlgorithm<?> | RepresentativeUncertainClustering.Parameterizer. samplesAlgorithmField to store the algorithm. | 
| Constructor and Description | 
|---|
| CenterOfMassMetaClustering(ClusteringAlgorithm<C> inner)Constructor, quite trivial. | 
| RepresentativeUncertainClustering(ClusteringDistanceSimilarityFunction distance,
                                 ClusteringAlgorithm<?> metaAlgorithm,
                                 ClusteringAlgorithm<?> samplesAlgorithm,
                                 int numsamples,
                                 RandomFactory random,
                                 double alpha,
                                 boolean keep)Constructor, quite trivial. | 
| RepresentativeUncertainClustering(ClusteringDistanceSimilarityFunction distance,
                                 ClusteringAlgorithm<?> metaAlgorithm,
                                 ClusteringAlgorithm<?> samplesAlgorithm,
                                 int numsamples,
                                 RandomFactory random,
                                 double alpha,
                                 boolean keep)Constructor, quite trivial. | 
| Modifier and Type | Field and Description | 
|---|---|
| (package private) ClusteringAlgorithm<?> | SilhouetteOutlierDetection. clustererClustering algorithm to use | 
| (package private) ClusteringAlgorithm<?> | SilhouetteOutlierDetection.Parameterizer. clustererClustering algorithm to use | 
| protected ClusteringAlgorithm<Clustering<MeanModel>> | CBLOF. clusteringAlgorithmThe clustering algorithm to use. | 
| protected ClusteringAlgorithm<Clustering<MeanModel>> | CBLOF.Parameterizer. clusteringAlgorithmThe clustering algorithm to use. | 
| Constructor and Description | 
|---|
| CBLOF(NumberVectorDistanceFunction<? super O> distanceFunction,
     ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm,
     double alpha,
     double beta)Constructor. | 
| SilhouetteOutlierDetection(DistanceFunction<? super O> distanceFunction,
                          ClusteringAlgorithm<?> clusterer,
                          NoiseHandling noiseOption)Constructor. | 
| Modifier and Type | Field and Description | 
|---|---|
| private ClusteringAlgorithm<?> | EvaluateClustering. referencealgReference algorithm. | 
| private ClusteringAlgorithm<?> | EvaluateClustering.Parameterizer. referencealgReference algorithm. | 
| Constructor and Description | 
|---|
| EvaluateClustering(ClusteringAlgorithm<?> referencealg,
                  boolean noiseSpecialHandling,
                  boolean selfPairing)Constructor. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SameSizeKMeansAlgorithm<V extends NumberVector>K-means variation that produces equally sized clusters. | 
Copyright © 2019 ELKI Development Team. License information.