@Title(value="FDBSCAN: Density-based Clustering of Applications with Noise on fuzzy objects") @Description(value="Algorithm to find density-connected sets in a database consisting of uncertain/fuzzy objects based on the parameters \'minpts\', \'epsilon\', \'samplesize\', and (if used) \'threshold\'") @Reference(authors="Hans-Peter Kriegel, Martin Pfeifle", title="Density-based clustering of uncertain data", booktitle="Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)", url="https://doi.org/10.1145/1081870.1081955", bibkey="DBLP:conf/kdd/KriegelP05") public class FDBSCAN extends GeneralizedDBSCAN
This implementation is based on GeneralizedDBSCAN. All implementation of
FDBSCAN functionality is located in the neighbor predicate
FDBSCANNeighborPredicate
.
Reference:
Hans-Peter Kriegel, Martin Pfeifle
Density-based clustering of uncertain data
Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)
Modifier and Type | Class and Description |
---|---|
static class |
FDBSCAN.Parameterizer
Parameterizer class.
|
GeneralizedDBSCAN.Instance<T>
coremodel, corepred, npred
ALGORITHM_ID
Constructor and Description |
---|
FDBSCAN(double epsilon,
int sampleSize,
double threshold,
RandomFactory seed,
int minpts)
Constructor that initialized GeneralizedDBSCAN.
|
getInputTypeRestriction, getLogger, run
public FDBSCAN(double epsilon, int sampleSize, double threshold, RandomFactory seed, int minpts)
epsilon
- Epsilon radiussampleSize
- Sample sizethreshold
- Thresholdseed
- Random generatorminpts
- MinPtsCopyright © 2019 ELKI Development Team. License information.