Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance.parallel |
Parallel implementations of distance-based outlier detectors.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.svm |
Support-Vector-Machines for outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application |
Base classes for stand alone applications.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.application.internal |
Internal utilities for development.
|
de.lmu.ifi.dbs.elki.data.uncertain |
Uncertain data objects.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.set |
Distance functions for binary and set type data.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.strings |
Distance functions for strings.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster |
Similarity measures for comparing clusters.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.index.idistance |
iDistance is a distance based indexing technique, using a reference points embedding.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfunctions |
Hash functions for LSH
|
de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics |
Preprocessed index used by the FastOPTICS algorithm.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.insert |
Insertion (choose path) strategies of nodes in an M-Tree (and variants).
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split |
Splitting strategies of nodes in an M-Tree (and variants).
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.bulk |
Packages for bulk-loading R*-Trees.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.insert |
Insertion strategies for R-Trees
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.overflow |
Overflow treatment strategies for R-Trees
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.reinsert |
Reinsertion strategies for R-Trees
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split |
Splitting strategies for R-Trees
|
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.geodesy | |
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections |
Random projection families.
|
de.lmu.ifi.dbs.elki.math.random |
Random number generation.
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves.
|
de.lmu.ifi.dbs.elki.math.statistics |
Statistical tests and methods.
|
de.lmu.ifi.dbs.elki.math.statistics.dependence |
Statistical measures of dependence, such as correlation.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution |
Standard distributions, with random generation functionalities.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator |
Estimators for statistical distributions.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta |
Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble.
|
de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality |
Methods for estimating the intrinsic dimensionality.
|
de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions |
Kernel functions from statistics.
|
de.lmu.ifi.dbs.elki.math.statistics.tests |
Statistical tests.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arrays |
Utilities for arrays: advanced sorting for primitvie arrays.
|
de.lmu.ifi.dbs.elki.utilities.documentation |
Documentation utilities: Annotations for Title, Description, Reference
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments |
Visualizers for inspecting cluster differences using pair counting segments.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.density |
Visualizers for data set density in a scatterplot projection.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier |
Visualizers for outlier scores based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.outlier |
Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
Modifier and Type | Class and Description |
---|---|
class |
DependencyDerivator<V extends NumberVector>
Dependency derivator computes quantitatively linear dependencies among
attributes of a given dataset based on a linear correlation PCA.
|
Modifier and Type | Class and Description |
---|---|
class |
CanopyPreClustering<O>
Canopy pre-clustering is a simple preprocessing step for clustering.
|
class |
DBSCAN<O>
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
find density-connected sets in a database.
|
class |
NaiveMeanShiftClustering<V extends NumberVector>
Mean-shift based clustering algorithm.
|
class |
SNNClustering<O>
Shared nearest neighbor clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagationClusteringAlgorithm<O>
Cluster analysis by affinity propagation.
|
Modifier and Type | Class and Description |
---|---|
class |
ChengAndChurch<V extends NumberVector>
Perform Cheng and Church biclustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH<V extends NumberVector>
The CASH algorithm is a subspace clustering algorithm based on the Hough
transform.
|
class |
COPAC<V extends NumberVector>
COPAC is an algorithm to partition a database according to the correlation
dimension of its objects and to then perform an arbitrary clustering
algorithm over the partitions.
|
class |
ERiC<V extends NumberVector>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
class |
FourC<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
HiCO<V extends NumberVector>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
of correlation clusters.
|
class |
LMCLUS
Linear manifold clustering in high dimensional spaces by stochastic search.
|
class |
ORCLUS<V extends NumberVector>
ORCLUS: Arbitrarily ORiented projected CLUSter generation.
|
Modifier and Type | Class and Description |
---|---|
class |
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM).
|
Modifier and Type | Class and Description |
---|---|
class |
COPACNeighborPredicate<V extends NumberVector>
COPAC neighborhood predicate.
|
class |
EpsilonNeighborPredicate<O>
The default DBSCAN and OPTICS neighbor predicate, using an
epsilon-neighborhood.
|
class |
ERiCNeighborPredicate<V extends NumberVector>
ERiC neighborhood predicate.
|
class |
FourCCorePredicate
The PreDeCon core point predicate -- having at least minpts. neighbors, and a
maximum preference dimensionality of lambda.
|
class |
FourCNeighborPredicate<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
GeneralizedDBSCAN
Generalized DBSCAN, density-based clustering with noise.
|
class |
LSDBC<O extends NumberVector>
Locally scaled Density Based Clustering.
|
class |
MinPtsCorePredicate
The DBSCAN default core point predicate -- having at least
MinPtsCorePredicate.minpts
neighbors. |
class |
PreDeConCorePredicate
The PreDeCon core point predicate -- having at least minpts. neighbors, and a
maximum preference dimensionality of lambda.
|
class |
PreDeConNeighborPredicate<V extends NumberVector>
Neighborhood predicate used by PreDeCon.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractHDBSCAN<O,R extends Result>
Abstract base class for HDBSCAN variations.
|
class |
AGNES<O>
Hierarchical Agglomerative Clustering (HAC) or Agglomerative Nesting (AGNES)
is a classic hierarchical clustering algorithm.
|
class |
AnderbergHierarchicalClustering<O>
This is a modification of the classic AGNES algorithm for hierarchical
clustering using a nearest-neighbor heuristic for acceleration.
|
class |
CentroidLinkageMethod
Centroid linkage clustering method, aka UPGMC: Unweighted Pair-Group Method
using Centroids.
|
class |
CLINK<O>
CLINK algorithm for complete linkage.
|
class |
GroupAverageLinkageMethod
Group-average linkage clustering method.
|
class |
HDBSCANLinearMemory<O>
Linear memory implementation of HDBSCAN clustering.
|
interface |
LinkageMethod
Abstract interface for implementing a new linkage method into hierarchical
clustering.
|
class |
MedianLinkageMethod
Median-linkage clustering method: Weighted pair group method using centroids
(WPGMC).
|
class |
SingleLinkageMethod
Single-linkage clustering method.
|
class |
SLINK<O>
Implementation of the efficient Single-Link Algorithm SLINK of R.
|
class |
SLINKHDBSCANLinearMemory<O>
Linear memory implementation of HDBSCAN clustering based on SLINK.
|
class |
WardLinkageMethod
Ward's method clustering method.
|
class |
WeightedAverageLinkageMethod
Weighted average linkage clustering method.
|
Modifier and Type | Field and Description |
---|---|
static Void |
AGNES.ADDITIONAL_REFERENCE
Additional historical reference for single-linkage.
|
Modifier and Type | Class and Description |
---|---|
class |
HDBSCANHierarchyExtraction
Extraction of simplified cluster hierarchies, as proposed in HDBSCAN.
|
class |
SimplifiedHierarchyExtraction
Extraction of simplified cluster hierarchies, as proposed in HDBSCAN.
|
Modifier and Type | Class and Description |
---|---|
class |
CLARA<V>
Clustering Large Applications (CLARA) is a clustering method for large data
sets based on PAM, partitioning around medoids (
KMedoidsPAM ) based on
sampling. |
class |
KMeansBisecting<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
class |
KMeansElkan<V extends NumberVector>
Elkan's fast k-means by exploiting the triangle inequality.
|
class |
KMeansHamerly<V extends NumberVector>
Hamerly's fast k-means by exploiting the triangle inequality.
|
class |
KMeansLloyd<V extends NumberVector>
The standard k-means algorithm, using Lloyd-style bulk iterations.
|
class |
KMeansMacQueen<V extends NumberVector>
The original k-means algorithm, using MacQueen style incremental updates;
making this effectively an "online" (streaming) algorithm.
|
class |
KMediansLloyd<V extends NumberVector>
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
of the more complicated approach suggested by Kaufman and Rousseeuw (see
KMedoidsPAM instead). |
class |
KMedoidsPAM<V>
The original PAM algorithm or k-medoids clustering, as proposed by Kaufman
and Rousseeuw in "Partitioning Around Medoids".
|
class |
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
KMeansPlusPlusInitialMeans<O>
K-Means++ initialization for k-means.
|
class |
PAMInitialMeans<O>
PAM initialization for k-means (and of course, PAM).
|
class |
RandomlyChosenInitialMeans<O>
Initialize K-means by randomly choosing k existing elements as cluster
centers.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeansQualityMeasure<O extends NumberVector>
Base class for evaluating clusterings by information criteria (such as AIC or
BIC).
|
class |
AkaikeInformationCriterion
Akaike Information Criterion (AIC).
|
class |
BayesianInformationCriterion
Bayesian Information Criterion (BIC), also known as Schwarz criterion (SBC,
SBIC) for the use with evaluating k-means results.
|
class |
BayesianInformationCriterionZhao
Different version of the BIC criterion.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihoodAlternate(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOPTICS<O>
The OPTICS algorithm for density-based hierarchical clustering.
|
class |
DeLiClu<NV extends NumberVector>
DeliClu: Density-Based Hierarchical Clustering, a hierarchical algorithm to
find density-connected sets in a database.
|
class |
FastOPTICS<V extends NumberVector>
FastOPTICS algorithm (Fast approximation of OPTICS)
Note that this is not FOPTICS as in "Fuzzy OPTICS"!
|
class |
OPTICSHeap<O>
The OPTICS algorithm for density-based hierarchical clustering.
|
class |
OPTICSList<O>
The OPTICS algorithm for density-based hierarchical clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
class |
DiSH<V extends NumberVector>
Algorithm for detecting subspace hierarchies.
|
class |
DOC<V extends NumberVector>
The DOC algorithm, and it's heuristic variant, FastDOC.
|
class |
HiSC<V extends NumberVector>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
of subspace clusters.
|
class |
P3C<V extends NumberVector>
P3C: A Robust Projected Clustering Algorithm.
|
class |
PreDeCon<V extends NumberVector>
PreDeCon computes clusters of subspace preference weighted connected points.
|
class |
PROCLUS<V extends NumberVector>
The PROCLUS algorithm, an algorithm to find subspace clusters in high
dimensional spaces.
|
class |
SUBCLU<V extends NumberVector>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
Modifier and Type | Class and Description |
---|---|
class |
CenterOfMassMetaClustering<C extends Clustering<?>>
Center-of-mass meta clustering reduces uncertain objects to their center of
mass, then runs a vector-oriented clustering algorithm on this data set.
|
class |
CKMeans
Run k-means on the centers of each uncertain object.
|
class |
FDBSCAN
FDBSCAN is an adaption of DBSCAN for fuzzy (uncertain) objects.
|
class |
FDBSCANNeighborPredicate
Density-based Clustering of Applications with Noise and Fuzzy objects
(FDBSCAN) is an Algorithm to find sets in a fuzzy database that are
density-connected with minimum probability.
|
class |
RepresentativeUncertainClustering
Representative clustering of uncertain data.
|
class |
UKMeans
Uncertain K-Means clustering, using the average deviation from the center.
|
Modifier and Type | Class and Description |
---|---|
class |
APRIORI
The APRIORI algorithm for Mining Association Rules.
|
class |
Eclat
Eclat is a depth-first discovery algorithm for mining frequent itemsets.
|
class |
FPGrowth
FP-Growth is an algorithm for mining the frequent itemsets by using a
compressed representation of the database called
FPGrowth.FPTree . |
Modifier and Type | Class and Description |
---|---|
class |
COP<V extends NumberVector>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. |
class |
DWOF<O>
Algorithm to compute dynamic-window outlier factors in a database based on a
specified parameter
DWOF.Parameterizer.K_ID (-dwof.k ). |
class |
GaussianUniformMixture<V extends NumberVector>
Outlier detection algorithm using a mixture model approach.
|
class |
OPTICSOF<O>
Optics-OF outlier detection algorithm, an algorithm to find Local Outliers in
a database based on ideas from
OPTICSTypeAlgorithm clustering. |
class |
SimpleCOP<V extends NumberVector>
Algorithm to compute local correlation outlier probability.
|
Modifier and Type | Class and Description |
---|---|
class |
ABOD<V extends NumberVector>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
class |
FastABOD<V extends NumberVector>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
class |
LBABOD<V extends NumberVector>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
Modifier and Type | Class and Description |
---|---|
class |
SilhouetteOutlierDetection<O>
Outlier detection by using the Silhouette Coefficients.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDBOutlier<O>
Simple distance based outlier detection algorithms.
|
class |
DBOutlierDetection<O>
Simple distanced based outlier detection algorithm.
|
class |
DBOutlierScore<O>
Compute percentage of neighbors in the given neighborhood with size d.
|
class |
HilOut<O extends NumberVector>
Fast Outlier Detection in High Dimensional Spaces
Outlier Detection using Hilbert space filling curves
Reference:
F.
|
class |
KNNOutlier<O>
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
class |
KNNWeightOutlier<O>
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
class |
ODIN<O>
Outlier detection based on the in-degree of the kNN graph.
|
class |
ReferenceBasedOutlierDetection
Reference-Based Outlier Detection algorithm, an algorithm that computes kNN
distances approximately, using reference points.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelKNNOutlier<O>
Parallel implementation of KNN Outlier detection.
|
class |
ParallelKNNWeightOutlier<O>
Parallel implementation of KNN Weight Outlier detection.
|
Modifier and Type | Class and Description |
---|---|
class |
ALOCI<O extends NumberVector>
Fast Outlier Detection Using the "approximate Local Correlation Integral".
|
class |
COF<O>
Connectivity-based outlier factor (COF).
|
class |
FlexibleLOF<O>
Flexible variant of the "Local Outlier Factor" algorithm.
|
class |
INFLO<O>
Influence Outliers using Symmetric Relationship (INFLO) using two-way search,
is an outlier detection method based on LOF; but also using the reverse kNN.
|
class |
KDEOS<O>
Generalized Outlier Detection with Flexible Kernel Density Estimates.
|
class |
LDF<O extends NumberVector>
Outlier Detection with Kernel Density Functions.
|
class |
LDOF<O>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
class |
LOCI<O>
Fast Outlier Detection Using the "Local Correlation Integral".
|
class |
LOF<O>
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.Parameterizer.K_ID (-lof.k ). |
class |
LoOP<O>
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
class |
SimplifiedLOF<O>
A simplified version of the original LOF algorithm, which does not use the
reachability distance, yielding less stable results on inliers.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelLOF<O>
Parallel implementation of Local Outlier Factor using processors.
|
class |
ParallelSimplifiedLOF<O>
Parallel implementation of Simplified-LOF Outlier detection using processors.
|
Modifier and Type | Class and Description |
---|---|
class |
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection.
|
class |
HiCS<V extends NumberVector>
Algorithm to compute High Contrast Subspaces for Density-Based Outlier
Ranking.
|
Modifier and Type | Class and Description |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector>
Mean Approach is used to discover spatial outliers with multiple attributes.
|
class |
CTLuMedianAlgorithm<N>
Median Algorithm of C.
|
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector>
Median Approach is used to discover spatial outliers with multiple
attributes.
|
class |
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the
local and global means.
|
class |
CTLuRandomWalkEC<N>
Spatial outlier detection based on random walks.
|
class |
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a
linear regression of object attributes and their neighbors average value.
|
class |
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard
deviation of their neighborhood.
|
class |
SLOM<N,O>
SLOM: a new measure for local spatial outliers
Reference:
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
class |
SOF<N,O>
The Spatial Outlier Factor (SOF) is a spatial
LOF variation. |
class |
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAggarwalYuOutlier<V extends NumberVector>
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
class |
AggarwalYuEvolutionary<V extends NumberVector>
Evolutionary variant (EAFOD) of the high-dimensional outlier detection
algorithm by Aggarwal and Yu.
|
class |
AggarwalYuNaive<V extends NumberVector>
BruteForce variant of the high-dimensional outlier detection algorithm by
Aggarwal and Yu.
|
class |
OutRankS1
OutRank: ranking outliers in high dimensional data.
|
class |
OUTRES<V extends NumberVector>
Adaptive outlierness for subspace outlier ranking (OUTRES).
|
class |
SOD<V extends NumberVector>
Subspace Outlier Degree.
|
Modifier and Type | Class and Description |
---|---|
class |
LibSVMOneClassOutlierDetection<V extends NumberVector>
Outlier-detection using one-class support vector machines.
|
Modifier and Type | Class and Description |
---|---|
class |
HopkinsStatisticClusteringTendency
The Hopkins Statistic of Clustering Tendency measures the probability that a
data set is generated by a uniform data distribution.
|
Modifier and Type | Field and Description |
---|---|
static String |
AbstractApplication.REFERENCE
Information for citation and version.
|
Modifier and Type | Class and Description |
---|---|
class |
ComputeKNNOutlierScores<O extends NumberVector>
Application that runs a series of kNN-based algorithms on a data set, for
building an ensemble in a second step.
|
class |
GreedyEnsembleExperiment
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores , and compute a naive ensemble for it. |
class |
VisualizePairwiseGainMatrix
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores , and compute a matrix with the pairwise
gains. |
Modifier and Type | Method and Description |
---|---|
private static List<Pair<Reference,TreeSet<Object>>> |
DocumentReferences.sortedReferences() |
Modifier and Type | Method and Description |
---|---|
private static void |
DocumentReferences.addReference(Object cls,
Reference ref,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
Modifier and Type | Method and Description |
---|---|
private static void |
DocumentReferences.addReference(Object cls,
Reference ref,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
private static void |
DocumentReferences.addReference(Object cls,
Reference ref,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
private static Document |
DocumentReferences.documentReferences(List<Pair<Reference,TreeSet<Object>>> refs) |
private static void |
DocumentReferences.documentReferencesWiki(List<Pair<Reference,TreeSet<Object>>> refs,
PrintStream refstreamW) |
private static void |
DocumentReferences.inspectClass(Class<?> cls,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
private static void |
DocumentReferences.inspectClass(Class<?> cls,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
private static void |
DocumentReferences.inspectPackage(Package p,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
private static void |
DocumentReferences.inspectPackage(Package p,
List<Pair<Reference,TreeSet<Object>>> refs,
Map<Reference,TreeSet<Object>> map) |
Modifier and Type | Class and Description |
---|---|
class |
UnweightedDiscreteUncertainObject
Unweighted implementation of discrete uncertain objects.
|
class |
WeightedDiscreteUncertainObject
Weighted version of discrete uncertain objects.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
IntegerDBIDArrayQuickSort
Class to sort an integer DBID array, using a modified quicksort.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearDiscriminantAnalysisFilter<V extends NumberVector>
Linear Discriminant Analysis (LDA) / Fisher's linear discriminant.
|
class |
PerturbationFilter<V extends NumberVector>
A filter to perturb the values by adding micro-noise.
|
Modifier and Type | Class and Description |
---|---|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
spaces.
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form.
|
class |
LorentzianDistanceFunction
Lorentzian distance function for vector spaces.
|
Modifier and Type | Method and Description |
---|---|
(package private) static void |
BrayCurtisDistanceFunction.secondReference()
Dummy method, just to attach a second reference.
|
(package private) static void |
BrayCurtisDistanceFunction.thirdReference()
Dummy method, just to attach a third reference.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
color similarity.
|
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
color similarity.
|
Modifier and Type | Method and Description |
---|---|
double |
LngLatDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
double |
LatLngDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
double |
DimensionSelectingLatLngDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e.
|
Modifier and Type | Class and Description |
---|---|
class |
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version.
|
class |
HellingerDistanceFunction
Hellinger kernel / Hellinger distance are used with SIFT vectors, and also
known as Bhattacharyya distance / coefficient.
|
class |
JeffreyDivergenceDistanceFunction
Jeffrey Divergence Distance for
NumberVector s. |
class |
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric.
|
Modifier and Type | Class and Description |
---|---|
class |
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
many places they differ.
|
class |
JaccardSimilarityDistanceFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
LevenshteinDistanceFunction
Classic Levenshtein distance on strings.
|
class |
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length.
|
Modifier and Type | Class and Description |
---|---|
class |
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors.
|
class |
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors.
|
class |
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors.
|
class |
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors.
|
class |
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
Kulczynski1SimilarityFunction
Kulczynski similarity 1.
|
class |
Kulczynski2SimilarityFunction
Kulczynski similarity 2.
|
Modifier and Type | Class and Description |
---|---|
class |
ClusteringAdjustedRandIndexSimilarityFunction
Measure the similarity of clusters via the Adjusted Rand Index.
|
class |
ClusteringBCubedF1SimilarityFunction
Measure the similarity of clusters via the BCubed F1 Index.
|
class |
ClusteringFowlkesMallowsSimilarityFunction
Measure the similarity of clusters via the Fowlkes-Mallows Index.
|
class |
ClusteringRandIndexSimilarityFunction
Measure the similarity of clusters via the Rand Index.
|
class |
ClusterJaccardSimilarityFunction
Measure the similarity of clusters via the Jaccard coefficient.
|
Modifier and Type | Class and Description |
---|---|
class |
BCubed
BCubed measures.
|
class |
EditDistance
Edit distance measures.
|
class |
Entropy
Entropy based measures.
|
class |
SetMatchingPurity
Set matching purity measures.
|
Modifier and Type | Method and Description |
---|---|
double |
SetMatchingPurity.f1Measure()
Get the set matching F1-Measure
Steinbach, M. and Karypis, G. and Kumar, V.
|
double |
SetMatchingPurity.fMeasureFirst()
Get the Van Rijsbergen’s F measure (asymmetric) for first clustering
E.
|
double |
SetMatchingPurity.fMeasureSecond()
Get the Van Rijsbergen’s F measure (asymmetric) for second clustering
E.
|
double |
PairCounting.fowlkesMallows()
Computes the pair-counting Fowlkes-mallows (flat only, non-hierarchical!)
|
double |
Entropy.normalizedVariationOfInformation()
Get the normalized variation of information (normalized, 0 = equal) NVI = 1
- NMI_Joint
Nguyen, X.
|
double |
SetMatchingPurity.purity()
Get the set matchings purity (first:second clustering) (normalized, 1 =
equal)
|
double |
PairCounting.randIndex()
Computes the Rand index (RI).
|
Modifier and Type | Class and Description |
---|---|
class |
EvaluateCIndex<O>
Compute the C-index of a data set.
|
class |
EvaluateConcordantPairs<O>
Compute the Gamma Criterion of a data set.
|
class |
EvaluateDaviesBouldin
Compute the Davies-Bouldin index of a data set.
|
class |
EvaluatePBMIndex
Compute the PBM of a data set
Reference:
M.
|
class |
EvaluateSilhouette<O>
Compute the silhouette of a data set.
|
class |
EvaluateVarianceRatioCriteria<O>
Compute the Variance Ratio Criteria of a data set.
|
Modifier and Type | Method and Description |
---|---|
double |
EvaluateConcordantPairs.computeTau(long c,
long d,
double m,
long wd,
long bd)
Compute the Tau correlation measure
|
Modifier and Type | Class and Description |
---|---|
class |
Segments
Creates segments of two or more clusterings.
|
Modifier and Type | Class and Description |
---|---|
class |
OutlierSmROCCurve
Smooth ROC curves are a variation of classic ROC curves that takes the scores
into account.
|
Modifier and Type | Class and Description |
---|---|
class |
InMemoryIDistanceIndex<O>
In-memory iDistance index, a metric indexing method using a reference point
embedding.
|
Modifier and Type | Field and Description |
---|---|
static Void |
InMemoryIDistanceIndex.SECOND_REFERENCE
Second reference, for documentation generation.
|
Modifier and Type | Class and Description |
---|---|
class |
CosineHashFunctionFamily
Hash function family to use with Cosine distance.
|
class |
EuclideanHashFunctionFamily
2-stable hash function family for Euclidean distances.
|
class |
ManhattanHashFunctionFamily
2-stable hash function family for Euclidean distances.
|
Modifier and Type | Class and Description |
---|---|
class |
CosineLocalitySensitiveHashFunction
Random projection family to use with sparse vectors.
|
class |
MultipleProjectionsLocalitySensitiveHashFunction
LSH hash function for vector space data.
|
Modifier and Type | Class and Description |
---|---|
class |
RandomProjectedNeighborssAndDensities<V extends NumberVector>
Random Projections used for computing neighbors and density estimates.
|
Modifier and Type | Class and Description |
---|---|
class |
NaiveProjectedKNNPreprocessor<O extends NumberVector>
Compute the approximate k nearest neighbors using 1 dimensional projections.
|
class |
RandomSampleKNNPreprocessor<O>
Class that computed the kNN only on a random sample.
|
class |
SpacefillingKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves.
|
class |
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves.
|
Modifier and Type | Class and Description |
---|---|
class |
PINN<O extends NumberVector>
Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the
nearest neighbors in high dimensional spaces by using a random projection
based index.
|
Modifier and Type | Class and Description |
---|---|
class |
CoverTree<O>
Cover tree data structure (in-memory).
|
Modifier and Type | Class and Description |
---|---|
class |
MTree<O>
MTree is a metrical index structure based on the concepts of the M-Tree.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimumEnlargementInsert<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry>
Default insertion strategy for the M-tree.
|
Modifier and Type | Class and Description |
---|---|
class |
MLBDistSplit<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree.
|
class |
MMRadSplit<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree.
|
class |
MRadSplit<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree.
|
class |
RandomSplit<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimalisticMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree.
|
class |
SmallMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanRStarTreeKNNQuery<O extends NumberVector>
Instance of a KNN query for a particular spatial index.
|
class |
EuclideanRStarTreeRangeQuery<O extends NumberVector>
Instance of a range query for a particular spatial index.
|
class |
RStarTreeKNNQuery<O extends SpatialComparable>
Instance of a KNN query for a particular spatial index.
|
class |
RStarTreeRangeQuery<O extends SpatialComparable>
Instance of a range query for a particular spatial index.
|
Modifier and Type | Class and Description |
---|---|
class |
RStarTree
RStarTree is a spatial index structure based on the concepts of the R*-Tree.
|
Modifier and Type | Class and Description |
---|---|
class |
OneDimSortBulkSplit
Simple bulk loading strategy by sorting the data along the first dimension.
|
class |
SortTileRecursiveBulkSplit
Sort-Tile-Recursive aims at tiling the data space with a grid-like structure
for partitioning the dataset into the required number of buckets.
|
class |
SpatialSortBulkSplit
Bulk loading by spatially sorting the objects, then partitioning the sorted
list appropriately.
|
Modifier and Type | Class and Description |
---|---|
class |
ApproximativeLeastOverlapInsertionStrategy
The choose subtree method proposed by the R*-Tree with slightly better
performance for large leaf sizes (linear approximation).
|
class |
CombinedInsertionStrategy
Use two different insertion strategies for directory and leaf nodes.
|
class |
LeastEnlargementInsertionStrategy
The default R-Tree insertion strategy: find rectangle with least volume
enlargement.
|
class |
LeastEnlargementWithAreaInsertionStrategy
A slight modification of the default R-Tree insertion strategy: find
rectangle with least volume enlargement, but choose least area on ties.
|
class |
LeastOverlapInsertionStrategy
The choose subtree method proposed by the R*-Tree for leaf nodes.
|
Modifier and Type | Class and Description |
---|---|
class |
LimitedReinsertOverflowTreatment
Limited reinsertions, as proposed by the R*-Tree: For each real insert, allow
reinsertions to happen only once per level.
|
Modifier and Type | Class and Description |
---|---|
class |
CloseReinsert
Reinsert objects on page overflow, starting with close objects first (even
when they will likely be inserted into the same page again!)
|
class |
FarReinsert
Reinsert objects on page overflow, starting with farther objects first (even
when they will likely be inserted into the same page again!)
|
Modifier and Type | Class and Description |
---|---|
class |
AngTanLinearSplit
Line-time complexity split proposed by Ang and Tan.
|
class |
GreeneSplit
Quadratic-time complexity split as used by Diane Greene for the R-Tree.
|
class |
RTreeLinearSplit
Linear-time complexity greedy split as used by the original R-Tree.
|
class |
RTreeQuadraticSplit
Quadratic-time complexity greedy split as used by the original R-Tree.
|
class |
TopologicalSplitter
Encapsulates the required parameters for a topological split of a R*-Tree.
|
Modifier and Type | Class and Description |
---|---|
class |
DAFile
Dimension approximation file, a one-dimensional part of the
PartialVAFile . |
class |
PartialVAFile<V extends NumberVector>
PartialVAFile.
|
class |
VAFile<V extends NumberVector>
Vector-approximation file (VAFile)
Reference:
Weber, R. and Blott, S.
|
Modifier and Type | Class and Description |
---|---|
class |
Mean
Compute the mean using a numerically stable online algorithm.
|
class |
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
class |
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
kurtosis.
|
Modifier and Type | Method and Description |
---|---|
void |
MeanVariance.put(double val,
double weight)
Add data with a given weight.
|
Modifier and Type | Class and Description |
---|---|
class |
HiCSDimensionSimilarity
Use the statistical tests as used by HiCS to arrange dimensions.
|
class |
HSMDimensionSimilarity
Compute the similarity of dimensions by using a hough transformation.
|
class |
MCEDimensionSimilarity
Compute dimension similarity by using a nested means discretization.
|
class |
SlopeDimensionSimilarity
Arrange dimensions based on the entropy of the slope spectrum.
|
class |
SlopeInversionDimensionSimilarity
Arrange dimensions based on the entropy of the slope spectrum.
|
class |
SURFINGDimensionSimilarity
Compute the similarity of dimensions using the SURFING score.
|
Modifier and Type | Method and Description |
---|---|
void |
SURFINGDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
Modifier and Type | Class and Description |
---|---|
class |
SphereUtil
Class with utility functions for distance computations on the sphere.
|
Modifier and Type | Method and Description |
---|---|
static double |
SphereUtil.ellipsoidVincentyFormulaDeg(double f,
double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points.
|
static double |
SphereUtil.ellipsoidVincentyFormulaRad(double f,
double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points.
|
static double |
SphereUtil.haversineFormulaDeg(double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points using the
Haversine formula
Complexity: 5 trigonometric functions, 2 sqrt.
|
static double |
SphereUtil.haversineFormulaRad(double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points using the
Haversine formula
Complexity: 5 trigonometric functions, 2 sqrt.
|
static double |
SphereUtil.latlngMinDistDeg(double plat,
double plng,
double rminlat,
double rminlng,
double rmaxlat,
double rmaxlng)
Point to rectangle minimum distance.
|
static double |
SphereUtil.latlngMinDistRad(double plat,
double plng,
double rminlat,
double rminlng,
double rmaxlat,
double rmaxlng)
Point to rectangle minimum distance.
|
static double |
SphereUtil.latlngMinDistRadFull(double plat,
double plng,
double rminlat,
double rminlng,
double rmaxlat,
double rmaxlng)
Point to rectangle minimum distance.
|
static double |
SphereUtil.sphericalVincentyFormulaDeg(double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points.
|
static double |
SphereUtil.sphericalVincentyFormulaRad(double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate great-circle distance of two points.
|
Modifier and Type | Class and Description |
---|---|
class |
GrahamScanConvexHull2D
Classes to compute the convex hull of a set of points in 2D, using the
classic Grahams scan.
|
class |
PrimsMinimumSpanningTree
Prim's algorithm for finding the minimum spanning tree.
|
class |
SweepHullDelaunay2D
Compute the Convex Hull and/or Delaunay Triangulation, using the sweep-hull
approach of David Sinclair.
|
Modifier and Type | Class and Description |
---|---|
class |
PCAFilteredAutotuningRunner
Performs a self-tuning local PCA based on the covariance matrices of given
objects.
|
class |
RANSACCovarianceMatrixBuilder
RANSAC based approach to a more robust covariance matrix computation.
|
class |
WeightedCovarianceMatrixBuilder
CovarianceMatrixBuilder with weights. |
Modifier and Type | Method and Description |
---|---|
Matrix |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation) |
Modifier and Type | Class and Description |
---|---|
class |
AchlioptasRandomProjectionFamily
Random projections as suggested by Dimitris Achlioptas.
|
class |
CauchyRandomProjectionFamily
Random projections using Cauchy distributions (1-stable).
|
class |
GaussianRandomProjectionFamily
Random projections using Cauchy distributions (1-stable).
|
class |
RandomHyperplaneProjectionFamily
Random hyperplane projection family.
|
class |
RandomSubsetProjectionFamily
Random projection family based on selecting random features.
|
Modifier and Type | Class and Description |
---|---|
class |
XorShift1024NonThreadsafeRandom
Replacement for Java's
Random class, using a different
random number generation strategy. |
class |
XorShift64NonThreadsafeRandom
Replacement for Java's
Random class, using a different
random number generation strategy. |
Modifier and Type | Class and Description |
---|---|
class |
BinarySplitSpatialSorter
Spatially sort the data set by repetitive binary splitting, circulating
through the dimensions.
|
class |
HilbertSpatialSorter
Sort object along the Hilbert Space Filling curve by mapping them to their
Hilbert numbers and sorting them.
|
class |
PeanoSpatialSorter
Bulk-load an R-tree index by presorting the objects with their position on
the Peano curve.
|
Modifier and Type | Class and Description |
---|---|
class |
ProbabilityWeightedMoments
Estimate the L-Moments of a sample.
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceCorrelationDependenceMeasure
Distance correlation.
|
class |
HiCSDependenceMeasure
Use the statistical tests as used by HiCS to measure dependence of variables.
|
class |
HoeffdingsDDependenceMeasure
Calculate Hoeffding's D as a measure of dependence.
|
class |
HSMDependenceMeasure
Compute the similarity of dimensions by using a hough transformation.
|
class |
MCEDependenceMeasure
Compute a mutual information based dependence measure using a nested means
discretization, originally proposed for ordering axes in parallel coordinate
plots.
|
class |
SlopeDependenceMeasure
Arrange dimensions based on the entropy of the slope spectrum.
|
class |
SlopeInversionDependenceMeasure
Arrange dimensions based on the entropy of the slope spectrum.
|
class |
SURFINGDependenceMeasure
Compute the similarity of dimensions using the SURFING score.
|
Modifier and Type | Method and Description |
---|---|
<A,B> double |
SURFINGDependenceMeasure.dependence(NumberArrayAdapter<?,A> adapter1,
A data1,
NumberArrayAdapter<?,B> adapter2,
B data2) |
Modifier and Type | Class and Description |
---|---|
class |
HaltonUniformDistribution
Halton sequences are a pseudo-uniform distribution.
|
Modifier and Type | Method and Description |
---|---|
protected static double |
GammaDistribution.chisquaredProbitApproximation(double p,
double nu,
double g)
Approximate probit for chi squared distribution
Based on first half of algorithm AS 91
Reference:
Algorithm AS 91: The percentage points of the $\chi^2$ distribution
D.J. |
private static double |
PoissonDistribution.devianceTerm(double x,
double np)
Evaluate the deviance term of the saddle point approximation.
|
static double |
GammaDistribution.digamma(double x)
Compute the Psi / Digamma function
Reference:
J.
|
static double |
PoissonDistribution.pmf(double x,
int n,
double p)
Poisson probability mass function (PMF) for integer values.
|
static double |
ChiSquaredDistribution.quantile(double x,
double dof)
Return the quantile function for this distribution
Reference:
Algorithm AS 91: The percentage points of the $\chi$^2 distribution
D.J. |
static double |
GammaDistribution.quantile(double p,
double k,
double theta)
Compute probit (inverse cdf) for Gamma distributions.
|
private static double |
PoissonDistribution.stirlingError(double n)
Calculates the Striling Error
stirlerr(n) = ln(n!)
|
private static double |
PoissonDistribution.stirlingError(int n)
Calculates the Striling Error
stirlerr(n) = ln(n!)
|
Modifier and Type | Class and Description |
---|---|
class |
CauchyMADEstimator
Estimate Cauchy distribution parameters using Median and MAD.
|
class |
EMGOlivierNorbergEstimator
Naive distribution estimation using mean and sample variance.
|
class |
ExponentialLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
class |
ExponentialMADEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
class |
ExponentialMedianEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
class |
GammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
class |
GammaLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
class |
GammaMADEstimator
Robust parameter estimation for the Gamma distribution.
|
class |
GammaMOMEstimator
Simple parameter estimation for the Gamma distribution.
|
class |
GeneralizedExtremeValueLMMEstimator
Estimate the parameters of a Generalized Extreme Value Distribution, using
the methods of L-Moments (LMM).
|
class |
GeneralizedLogisticAlternateLMMEstimator
Estimate the parameters of a Generalized Logistic Distribution, using the
methods of L-Moments (LMM).
|
class |
GeneralizedParetoLMMEstimator
Estimate the parameters of a Generalized Pareto Distribution (GPD), using the
methods of L-Moments (LMM).
|
class |
GumbelLMMEstimator
Estimate the parameters of a Gumbel Distribution, using the methods of
L-Moments (LMM).
|
class |
GumbelMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
class |
LaplaceMADEstimator
Estimate Laplace distribution parameters using Median and MAD.
|
class |
LaplaceMLEEstimator
Estimate Laplace distribution parameters using Median and mean deviation from
median.
|
class |
LogGammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
class |
LogisticLMMEstimator
Estimate the parameters of a Logistic Distribution, using the methods of
L-Moments (LMM).
|
class |
LogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
class |
LogLogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
class |
LogNormalBilkovaLMMEstimator
Alternate estimate the parameters of a log Gamma Distribution, using the
methods of L-Moments (LMM) for the Generalized Normal Distribution.
|
class |
LogNormalLMMEstimator
Estimate the parameters of a log Normal Distribution, using the methods of
L-Moments (LMM) for the Generalized Normal Distribution.
|
class |
LogNormalLogMADEstimator
Estimator using Medians.
|
class |
NormalLMMEstimator
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
class |
NormalMADEstimator
Estimator using Medians.
|
class |
RayleighMADEstimator
Estimate the parameters of a RayleighDistribution using the MAD.
|
class |
SkewGNormalLMMEstimator
Estimate the parameters of a skew Normal Distribution (Hoskin's Generalized
Normal Distribution), using the methods of L-Moments (LMM).
|
class |
UniformMADEstimator
Estimate Uniform distribution parameters using Median and MAD.
|
class |
WeibullLogMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
Modifier and Type | Class and Description |
---|---|
class |
WinsorisingEstimator<D extends Distribution>
Winsorising or Georgization estimator.
|
Modifier and Type | Class and Description |
---|---|
class |
AggregatedHillEstimator
Estimator using the weighted average of multiple hill estimators.
|
class |
GEDEstimator
Generalized Expansion Dimension for estimating the intrinsic dimensionality.
|
class |
HillEstimator
Hill estimator of the intrinsic dimensionality (maximum likelihood estimator
for ID).
|
class |
MOMEstimator
Methods of moments estimator, using the first moment (i.e. average).
|
class |
ZipfEstimator
Zipf estimator (qq-estimator) of the intrinsic dimensionality.
|
Modifier and Type | Field and Description |
---|---|
static double |
BiweightKernelDensityFunction.CANONICAL_BANDWIDTH
Canonical bandwidth: 35^(1/5)
|
static double |
TriweightKernelDensityFunction.CANONICAL_BANDWIDTH
Canonical bandwidth: (9450/143)^(1/5)
|
static double |
UniformKernelDensityFunction.CANONICAL_BANDWIDTH
Canonical bandwidth: (9/2)^(1/5)
|
static double |
EpanechnikovKernelDensityFunction.CANONICAL_BANDWIDTH
Canonical bandwidth: 15^(1/5)
|
static double |
GaussianKernelDensityFunction.CANONICAL_BANDWIDTH
Canonical bandwidth: (1./(4*pi))^(1/10)
|
Modifier and Type | Method and Description |
---|---|
double |
KernelDensityFunction.canonicalBandwidth()
Get the canonical bandwidth for this kernel.
|
Modifier and Type | Class and Description |
---|---|
class |
AndersonDarlingTest
Perform Anderson-Darling test for a Gaussian distribution.
|
class |
StandardizedTwoSampleAndersonDarlingTest
Perform a two-sample Anderson-Darling rank test, and standardize the
statistic according to Scholz and Stephens.
|
Modifier and Type | Field and Description |
---|---|
static Void |
StandardizedTwoSampleAndersonDarlingTest.ADDITIONAL_REFERENCE_1
Additional reference -- Darling's note on this equation
|
static Void |
StandardizedTwoSampleAndersonDarlingTest.ADDITIONAL_REFERENCE_2
More detailed discussion by Pettitt
|
Modifier and Type | Method and Description |
---|---|
static double |
AndersonDarlingTest.removeBiasNormalDistribution(double A2,
int n)
Remove bias from the Anderson-Darling statistic if the mean and standard
deviation were estimated from the data, and a normal distribution was
assumed.
|
Modifier and Type | Class and Description |
---|---|
class |
KMLOutputHandler
Class to handle KML output.
|
Modifier and Type | Class and Description |
---|---|
class |
IntegerArrayQuickSort
Class to sort an int array, using a modified quicksort.
|
Modifier and Type | Method and Description |
---|---|
static Reference |
DocumentationUtil.getReference(Class<?> c)
Get the reference annotation of a class, or
null . |
Modifier and Type | Class and Description |
---|---|
class |
COPOutlierScaling
CDF based outlier score scaling.
|
class |
HeDESNormalizationOutlierScaling
Normalization used by HeDES
|
class |
MinusLogGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1],
by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
|
class |
MinusLogStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
class |
MixtureModelOutlierScalingFunction
Tries to fit a mixture model (exponential for inliers and gaussian for
outliers) to the outlier score distribution.
|
class |
MultiplicativeInverseScaling
Scaling function to invert values basically by computing 1/x, but in a variation
that maps the values to the [0:1] interval and avoiding division by 0.
|
class |
OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]
by assuming a Gamma distribution on the values.
|
class |
OutlierMinusLogScaling
Scaling function to invert values by computing -1 * Math.log(x)
Useful for example for scaling
ABOD , but see
MinusLogStandardDeviationScaling and MinusLogGammaScaling for
more advanced scalings for this algorithm. |
class |
SigmoidOutlierScalingFunction
Tries to fit a sigmoid to the outlier scores and use it to convert the values
to probability estimates in the range of 0.0 to 1.0
Reference:
J.
|
class |
SqrtStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
class |
StandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
Modifier and Type | Method and Description |
---|---|
static void |
COPOutlierScaling.secondReference()
Secondary reference.
|
Modifier and Type | Class and Description |
---|---|
class |
CircleSegmentsVisualizer
Visualizer to draw circle segments of clusterings and enable interactive
selection of segments.
|
Modifier and Type | Method and Description |
---|---|
private double[] |
DensityEstimationOverlay.Instance.initializeBandwidth(double[][] data) |
Modifier and Type | Class and Description |
---|---|
class |
BubbleVisualization
Generates a SVG-Element containing bubbles.
|
class |
COPVectorVisualization
Visualize error vectors as produced by COP.
|
Modifier and Type | Class and Description |
---|---|
class |
NaiveAgglomerativeHierarchicalClustering3<O>
This tutorial will step you through implementing a well known clustering
algorithm, agglomerative hierarchical clustering, in multiple steps.
|
class |
NaiveAgglomerativeHierarchicalClustering4<O>
This tutorial will step you through implementing a well known clustering
algorithm, agglomerative hierarchical clustering, in multiple steps.
|
Modifier and Type | Class and Description |
---|---|
class |
ODIN<O>
Outlier detection based on the in-degree of the kNN graph.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.